

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache, 4. 28033 Madrid (España) Tel.: (+34) 91 302 0440 www.ietcc.csic.es gestiondif@ietcc.csic.es dit.ietcc.csic.es

Evaluación Técnica Europea

ETA 20/0046 18/09/2025

Parte general

Organismo de Evaluación Técnica que emite la Evaluación Técnica Europea:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Nombre comercial del producto de Tornillo hormigón THE construcción:

Familia a la que pertenece el producto de construcción:

Tornillo hormigón de medidas 6, 8, 10, 12, 14, 16 y 18 para

uso en hormigón.

Fabricante Index - Técnicas Expansivas S.L.

Segador 13

26006 Logroño (La Rioja) España. Página web: www.indexfix.com

Planta de fabricación: Planta Index 2

Esta Evaluación Técnica Europea contiene:

36 páginas incluyendo 3 anexos que forman parte integral

de esta evaluación.

Esta Evaluación Técnica Europea se emite de acuerdo con el Reglamento (UE) nº 305/2011, sobre la base de:

Documento de Evaluación Europeo DEE 330232-01-0601 "Anclajes mecánicos para uso en hormigón", ed.

Diciembre 2019

Este ETE reemplaza a:

ETE 20/0046 revisión 6 emitido el 28/04/2025

Esta Evaluación Técnica Europea es emitida por el Organismo de Evaluación Técnica en su lengua oficial.

Las traducciones de la presente Evaluación Técnica Europea a otros idiomas se corresponderán plenamente con el documento emitido originalmente y se identificarán como tales.

La comunicación de esta Evaluación Técnica Europea, incluida la transmisión por medios electrónicos, se realizará íntegramente. No obstante, podrán realizarse reproducciones parciales con el consentimiento por escrito del Organismo de Evaluación Técnica expedidor. Toda reproducción parcial debe identificarse como tal.

ETE 20/0046 - versión 7 del 18/09/2025 - página 2 de 36

PARTE ESPECÍFICA

Descripción técnica del producto

El tornillo hormigón Index THE se compone de un cuerpo y una cabeza. El diámetro de la cabeza es mayor que el diámetro del anclaje e incorpora un estriado debajo de la misma. El cuerpo del anclaje está formado por una rosca a lo largo de la mayor parte de la longitud del anclaje. El anclaje se instala en un agujero pretaladrado mediante una llave dinamométrica o una llave de impacto. Los hilos de la rosca cortan las caras internas del agujero del hormigón creando una interferencia mecánica durante la instalación.

El tornillo hormigón Index THE es una fijación fabricada en acero al carbono en medidas 6, 8, 10, 12, 14, 16 y 18. El tornillo hormigón Index TXE es una fijación fabricada en acero inoxidable en medidas 6, 8, 10 y 12.

En los anexos A1 y A2 se indica una descripción del producto y de su instalación.

2. Especificación del uso previsto de acuerdo con el Documento de Evaluación Europeo aplicable.

2.1 Uso previsto

Este ETE cubre fijaciones para ser usadas en hormigón compactado, armado o no armado, de peso normal, fisurado o sin fisurar, sin fibras, de clases de resistencia en el rango de C20/25 a C50/60, todo ello de conformidad con EN 206, para cargas estáticas o cuasi-estáticas o bajo acciones sísmicas (categorías C1 y C2) y con requisitos relacionados con la exposición al fuego, sometidas a cargas a tracción, cortante o tracción y cortante combinadas.

Las prestaciones dadas en la sección 3 son solo válidas si el anclaje se usa de acuerdo con las especificaciones y condiciones dadas en el anexo B1.

2.2 Condiciones generales relevantes para el uso del producto

Los métodos de evaluación incluidos o a los que se hace referencia en este DEE se han redactado sobre la base de la solicitud del fabricante de tener en cuenta una vida útil del elemento de fijación para el uso previsto de 50 años cuando se instala en las obras (siempre que el elemento de fijación se someta a una instalación adecuada). Estas disposiciones se basan en el estado actual de la técnica y en los conocimientos y experiencia disponibles.

Al evaluar el producto, se tendrá en cuenta el uso previsto por el fabricante. La vida útil real puede ser, en condiciones normales de uso, considerablemente mayor sin que se produzca una degradación importante que afecte a los requisitos básicos de las obras.

Las indicaciones dadas sobre la vida útil del producto de construcción no pueden interpretarse como una garantía dada por el fabricante del producto o su representante, ni por la EOTA al redactar este DEE, ni por el Organismo de Evaluación Técnica que emita un ETE basado en este DEE, sino que se consideran únicamente como un medio para expresar la vida útil económicamente razonable esperada del producto.

Este ETE cubre las fijaciones para su instalación en orificios pretaladrados en hormigón compactado, armado o no, de peso normal, sin fibras, teniendo en cuenta los anexos B y C.

3. Prestaciones del producto y referencia a los métodos empleados para su evaluación.

ETE 20/0046 - versión 7 del 18/09/2025 - página 3 de 36

Las pruebas de identificación y la evaluación para el uso previsto de este producto de acuerdo con los Requisitos Básicos de las Obras de Construcción (RBO) se llevaron a cabo de conformidad con DEE 330747-00-0601, Las características de cada sistema deben corresponder a los valores respectivos establecidos en las siguientes tablas de este ETE, verificado por IETcc

A continuación, se muestran los métodos de verificación, evaluación y valoración.

3.1 Resistencia mecánica y estabilidad (RBO 1)

Característica esencial	Cláusula relevante en el DEE	Prestación	Anexo
Resistencia a fallo del acero	2.2.1	N _{Rk,s} [kN]	C5, C6
Resistencia al fallo de extracción	2.2.2	$N_{Rk,p}[kN]$ $\psi_c[-]$	C5, C6
Resistencia a fallo del cono de hormigón	2.2.3	$k_{cr,N}, k_{ucr,N}$ [-] $h_{ef}, c_{cr,N}$ [mm]	C5, C6
Robustez	2.2.4	γinst [-]	C5, C6
Distancia mínima entre anclajes y al borde	2.2.5	c _{min} , s _{min} , h _{min} [mm]	C1 a C3
Distancia al borde para evitar fisuración bajo carga	2.2.6	N ⁰ _{Rk,sp} [kN], C _{cr,sp} [mm]	C5, C6
Resistencia al fallo del acero bajo cargas a cortante	2.2.7	V ⁰ _{Rk,s} [kN], M ⁰ _{Rk,s} [Nm], k ₇ [-]	C7, C8
Resistencia al fallo por desconchamiento	2.2.8	k ₈ [-]	C7, C8
Desplazamiento bajo cargas estáticas y cuasi-estáticas	2.2.10	$\delta_{N0},\delta_{N^\infty},\delta_{V0},\delta_{V^\infty}[mm]$	C9, C10
Resistencia a cargas sísmicas a tracción; desplazamientos	2.2.11 2.2.12	$ \begin{bmatrix} N_{Rk,s,C1}, \ N_{Rk,p,C1} [kN] \\ N_{Rk,s,C2}, \ N_{Rk,p,C2} [kN], \\ \delta_{N,C2} [mm] \\ \end{bmatrix} $	C11 a C13
Resistencia a las cargas sísmica a cortante; desplazamientos	2.2.13 2.2.14	$V_{Rk,s,C1}$ [kN], $V_{Rk,s,C2}$ [kN], $\delta_{V,C2}$ [mm]	C11 a C13
Factor de holgura anular	2.2.15	α _{gap} [-]	C11 a C13

3.2 Seguridad en caso de incendio (RBO 2)

Característica esencial	Cláusula relevante en el DEE	Prestación	Anexo
Reacción al fuego	2.2.16	La fijación satisfice los requisitos para clase A1 según EN 13501-1	ļ
Resistencia al fuego fallo del acero, carga de tensión	2.2.17	N ⁰ Rk,s,fi [kN]	C14 a C27
Resistencia al fuego fallo de extracción del acero, carga de tensión	2.2.18	N ⁰ _{Rk,p,fi} [kN]	C14 a C27
Resistencia al fuego fallo del acero, carga a cortante	2.2.19	V ⁰ _{Rk,s,fi} [kN] M ⁰ _{Rk,s,fi} [Nm]	C14 a C27

ETE 20/0046 - versión 7 del 18/09/2025 - página 4 de 36

3.3 Durabilidad

Característica esencial	Cláusula relevante en el DEE	Prestación	Anexo
Durabilidad:	2.2.20	Cincado Cinc níquel Láminas de cinc Galvanizado mecánico Atlantis Acero inoxidable	A2

4. Evaluación y Verificación de la Constancia de las Prestaciones (en lo sucesivo EVCP), sistema aplicado con referencia a su base legal.

El acto legal europeo aplicable para el sistema de Evaluación y Verificación de la Constancia de las Prestaciones (ver anexo V del Reglamento (UE) No 305/2011) es el 96/582/EC.

El sistema aplicable es el 1.

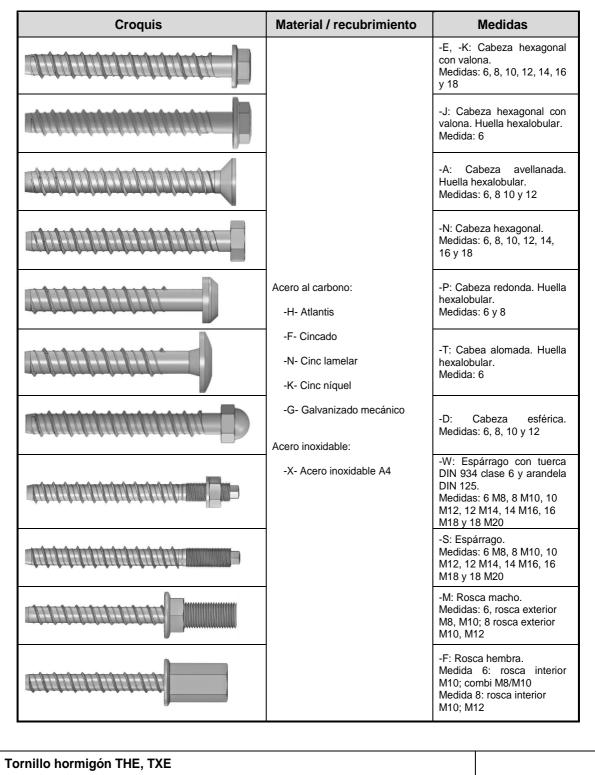
5. Detalles técnicos necesarios para la aplicación del sistema EVCP, según lo dispuesto en el Documento de Evaluación Europeo aplicable.

Los detalles técnicos necesarios para la aplicación del sistema EVCP se establecen en el plan de calidad depositado en el IETcc⁽¹⁾.

Preparado por: Dr. Julián Rivera Lozano (Unidad de Evaluación de Productos Innovadores IETcc-CSIC)

Emitido en Madrid, 18 de Septiembre de 2025

Director

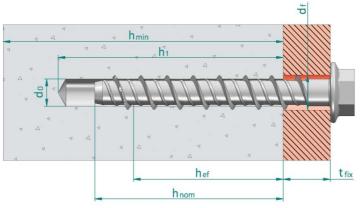

En nombre del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc - CSIC)

ETE 20/0046 - versión 7 del 18/09/2025 - página 5 de 36

⁽¹⁾ El Plan de Calidad es una parte confidencial del ETE y solo se entrega al organismo de certificación notificado que participa en la evaluación y verificación de la constancia de las prestaciones

Versiones del producto

ETE 20/0046 - versión 7 del 18/09/2025 - página 6 de 36


Anexo A1

Descripción del producto

Versiones

Condición instalada

do: Diámetro nominal de la broca

d_f: Diámetro del taladro de paso en la placa de anclaje

h_{ef}: Profundidad efectiva de anclaje

h₁: Profundidad del agujero

 h_{nom} : Profundidad de instalación en el hormigón h_{min} : Espesor mínimo del elemento de hormigón

t_{fix}: Espesor de la placa de anclaje

Identificación en la cabeza del producto: logotipo de la compañía + diámetro x longitud La punta de la rosca puede ir pintada

Para cabezas donde no exista suficiente espacio disponible, la marca de longitud puede ser reemplazada por los siguientes códigos:

Letra en la cabeza	Longitud [mm]
Α	35 ÷50
В	51 ÷ 62
С	63 ÷75
D	76 ÷ 88
Е	89 ÷ 101
F	102 ÷ 113
G	114 ÷ 126
Н	127 ÷139
I	140 ÷153

Tabla A1: Materiales

Item	Designación	Material del tornillo hormigón acero al carbono versiones TH / TF / TN / TK / TG	Material tornillo hormigón acero inoxidable versión TX
1	Anclaje	Acero al carbono, cincado ≥ 5 µm ISO 4042 Zn5 Acero al carbono, cinc níquel ≥ 8 µm ISO 4042, ZnNi8/An/T2 Acero al carbono, cinc lamelar ≥ 6 µm ISO 10683 Acero al carbono, galvanizado mecánico ≥ 40 µm EN ISO 12683 Zn 40 M(Fe) Acero al carbono, recubrimiento Atlantis	Cabeza y fuste: acero inoxidable grado A4 ISO 3506-1 Punta: acero al carbono endurecido

Tornillo hormigón THE, TXE	
Descripción del producto	Anexo A2
Condición instalada y materiales	

ETE 20/0046 - versión 7 del 18/09/2025 - página 7 de 36

Especificaciones de uso previsto Medida 10 12 14 16 18 75 h_{nom} 35 40 55 50 65 55 85 75 105 75 115 80 120 90 140 Versiones en acero al carbono: TH / TF / TN/ TK / TG Estático o cuasi estático Sísmico ✓ ✓ categoría C1 Sísmico categoría Exposición a fuego hasta 120 minutos Versiones en acero inoxidable: TX Estático o cuasi estático Sísmico categoría C1 Sísmico categoría C2 Exposición a fuego hasta 120 minutos

Materiales base:

- Hormigón armado o no armado de peso normal sin fibras de acuerdo con EN 206:2013 + A2:2021.
- Clases de resistencia C20/25 a C50/60 según EN 206:2013 + A2:2021.
- Hormigón fisurado o no fisurado.

Condiciones de uso:

- Temperatura del material base a lo largo de la vida de trabajo: -40 °C a +80 °C.
- Versiones en acero al carbono TH / TF / TN / TK / TG: condiciones ambientales: fijaciones sujetas a condiciones interiores secas
- Versiones en acero inoxidable TX: fijaciones sometidas a la exposición atmosférica externas (incluyendo ambientes industriales y marinos) o a condiciones interiores húmedas permanentes si no existen condiciones agresivas particulares. Estas condiciones agresivas particulares son, por ejemplo: inmersión permanente o alternada en agua de mar o en la zona de salpicaduras del agua de mar, atmósferas de cloruros de piscinas cubiertas o atmósferas con contaminación química extrema (por ejemplo, en plantas de desulfuración o túneles de carretera donde se utilicen materiales de deshielo). Atmósferas bajo clase de Resistencia a la Corrosión CRC III, de acuerdo a la EN 1993-1-4:2006+A1:2015, anexo A.
- TFM, TFF: la cabeza métrica del tornillo deberá tener una sección igual o superior a la sección neta del vástago del anclaje

Tornillo hormigón THE, TXE	
Uso previsto	Anexo B1
Especificaciones	

ETE 20/0046 - versión 7 del 18/09/2025 - página 8 de 36

Cálculo:

- Las fijaciones serán calculadas bajo la responsabilidad de un ingeniero con experiencia en fijaciones y obras de hormigón.
- Los procesos de cálculo y los planos verificables se preparan teniendo en cuenta las cargas que se van a fijar. La posición de la fijación se indicará en los planos de cálculo (por ejemplo, posición de la fijación respecto a armaduras o soportes, etc.).
- Las fijaciones bajo acciones estáticas o cuasi estáticas se calculan según el método A de acuerdo con EN 1992-4:2018.
- Las fijaciones bajo acciones sísmicas (hormigón fisurado) se calculan de acuerdo con EN 1992-4:2018. Las fijaciones serán instaladas fuera de las regiones críticas de la estructura de hormigón (por ejemplo, zonas de articulación). No están permitidas fijaciones a distancia o con capa de mortero.
- Las fijaciones bajo cargas a fuego se calculan de acuerdo con EN 1992-4:2018. Se debe asegurar que no se produce desprendimiento local del recubrimiento de hormigón.
- La medida 6 en profundidad reducida (35 mm) debe ser usada solo para componentes estructurales estáticamente indeterminados, cuando en caso de fallo la carga pueda ser distribuida a otras fijaciones.

Instalación:

- Taladrado solo en posición martillo: todos los tamaños y profundidades de instalación.
- La instalación de la fijación se realiza por personal debidamente cualificado y bajo la supervisión de la persona responsable de las cuestiones técnicas de la obra.
- En caso de agujero abortado: taladrar de nuevo a una distancia mínima de dos veces la profundidad del agujero abortado o a menor distancia si el agujero abortado se rellena con mortero de alta resistencia y si no está en dirección de la carga en los casos de cargas a cortantes u oblicuas.
- Después de la instalación no debe ser posible girar más el anclaje.
- La cabeza de la fijación debe apoyarse en la placa de anclaje y no debe estar dañada.
- Los anclajes solo se pueden instalar una única vez.

Tornillo hormigón THE, TXE	
Uso previsto	Anexo B2
Especificaciones	

ETE 20/0046 - versión 7 del 18/09/2025 - página 9 de 36

Tabla C1: Parámetros de instalación versiones en acero al carbono: TH / TF / TN/ TK / TG

Paráme	etros de insta	alación versiones er	1	Prestaciones								
acero	al carbono:	TH / TF / TN/ TK /	TG	6 8						10		
h _{nom}	Profundidad i	nominal de instalación:	[mm]	35	40	55	50	65	55	75	85	
h _{ef}	Profundidad e	efectiva de anclaje:	[mm]	26,0	30,0	43,0	37,5	50,5	41,5	58,5	67,0	
d ₀	Diámetro non	ninal de la broca:	[mm]		6		8	}		10		
df	Diámet. de pa	aso placa de anclaje ≤	[mm]		$7,5 \div 9$		10,5	÷ 12		12,5 ÷ 14		
$T_{inst,max}$	Par de instala	ación ≤	[Nm]		10		2	0		30		
h ₁	Profundidad of	del agujero ≥	[mm]	45	50	65	60	75	65	85	95	
h _{1,bit}	Profundidad of limpieza con	del agujero con broca ≥	[mm]	57	62	77	76	91	85	105	115	
h _{min}	Espesor míni	mo del hormigón:	[mm]	100	100	100	100	100	100	120	135	
L _{min}	Longitud míni	ima total del anclaje:	[mm]	35	40	55	50	65	55	75	85	
t _{fix}	Espesor de la	a placa de anclaje 1):	[mm]	L-35	L-40	L-55	L-50	L-65	L-55	L-75	L-85	
t _{fix}	Espesor de la versión espár	a placa de anclaje, rago ¹⁾ :	[mm]	L-44	L-49	L-64	L-59	L-74	L-65	L-85	L-95	
		Hexagonal tipo E, N:	[mm]	10		13		15				
		Hexagonal tipo K:	[mm]		10		1	3		17		
	I lave de	Hexagonal tipo J:	[mm]	13								
SW	vaso:	Esférica:	[mm]		10		13		16			
	vasu.	Macho:	[mm]		13		17					
		Hembra:	[mm]		13		13 / 17 ²⁾					
		Espárrago:	[mm]		5		7	,		8		
	Punta	Avellanada:	[-]		30		4	5	50			
TX	hexalobular:	Redonda:	[-]		40		45					
	nexalobular.	Alomada:	[-]		30							
dk	Diámetro cab	eza avellanada:	[mm]	12,4 18		8		21				
Smin	Distancia mír	ima entre anclajes:	[mm]	35		35			50			
C _{min}	Distancia mír	nima al borde:	[mm]	35		35			40			
	Equipo de instalación:			W. T _{imp}	n GDS 18E bact,max 250 equivalente	Nm, o	Mal TW035 W, T _{im} 350 N equiva	60, 400 pact,max Im, o	W. T _{im}	n GDS 24 _{pact,max} 60 equivalen	0 Nm,	

Tornillo hormigón THE	
Prestaciones	Anexo C1
Parámetros de instalación	

ETE 20/0046 - versión 7 del 18/09/2025 - página 10 de 36

FIRMANTE(1): ANGEL CASTILLO TALAVERA | FECHA: 23/10/2025 11:13 | Sin acción específica

L = longitud total del anclaje Vaso 13 para M10; vaso 17 para M12

Tabla C2: Parámetros de instalación versiones en acero al carbono: TH / TF / TN/ TK / TG (contin.)

Paráme	etros de inst	alación, versiones en	acero	o Prestaciones							
		/TN/TK/TG		12 14 16 18				18			
h _{nom}	Profundidad	nominal de instalación:	[mm]	75	105	75	115	80	120	90	140
h _{ef}	Profundidad	efectiva de anclaje:	[mm]	58,0	83,5	58,0	92,0	58,0	92,0	69,5	112,0
d_0	Diámetro no	minal de la broca:	[mm]	1	2		14		16		18
df	Diámetro de	paso placa de anclaje ≤	[mm]	14,8	÷16	16,9	9 ÷ 18	18,9	9 ÷ 20	20,9) ÷ 22
T _{inst,max}	Par de instal	ación ≤	[Nm]	5	0		70		80	(90
h ₁	Profundidad	del agujero ≥	[mm]	90	120	90	130	100	140	110	160
h _{1,bit}	Profundidad con broca ≥	del agujero con limpieza	[mm]	114	144	118	158	132	172	146	196
h _{min}	Espesor mín	imo del hormigón:	[mm]	120	170	120	185	115	185	140	225
L _{min}	Longitud mín	nima total del anclaje:	[mm]	75	105	75	115	80	120	90	140
t _{fix}	Espesor de la	a placa de anclaje 1):	[mm]	L-75	L-105	L-75	L-115	L-80	L-120	L-90	L-140
t_{fix}	Espesor de la versión espá	a placa de anclaje, rrago ¹⁾ :	[mm]	L-86	L-116	L-87	L-127	L-94	L-134	L-105	L-155
		Hexagonal tipo E, N:	[mm]	1	8		21	:	24	24	
	Llave de	Hexagonal tipo K:	[mm]	1	9		21	24		26	
SW	vaso	Esférica:	[mm]	1	8						
	vasu	Hembra:	[mm]	M12	2: 19						
		Espárrago:	[mm]	1	0	12		13		•	14
TX	Punta hexalo	bular, avellanada	[-]	5	5						
d_k	Diámetro cal	oeza avellanada:	[mm]	24							
Smin	Distancia mí	nima entre anclajes:	[mm]	7	75 80		80	80		80	
Cmin	Distancia mí	nima al borde:	[mm]	4	5		50	,	50	į	50
<u> </u>	Equipo de in	stalación:		В	osch GD	S 24, 80	00 W. T _{imp}	act,max 60	00 Nm, o	equivale	nte

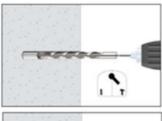
¹⁾ L = longitud total del anclaje

Tornillo hormigón THE	
Prestaciones	Anexo C2
Parámetros de instalación	

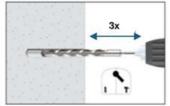
ETE 20/0046 - versión 7 del 18/09/2025 - página 11 de 36

Tabla C3: Parámetros de instalación versiones en acero inoxidable TX

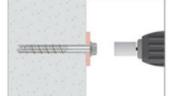
Paráme	etros de i	instalación, version	es en				Pre	estacio	nes			
	noxidabl	•	00 0		6		8	3	1	0	,	12
h _{nom}	Profundi instalaci	dad nominal de ón:	[mm]	35	40	55	50	65	55	85	75	105
h _{ef}	Profundi anclaje:	dad efectiva de	[mm]	26,0	30,0	43,0	37,5	50,5	41,5	67,0	58,0	83,5
d_0	Diámetro	nominal de la broca:	[mm]		6		8	3	1	0		12
df	Diámetro anclaje ≤	o de paso placa de ≦	[mm]		9		1	2	1	4		16
T _{inst,max}	Par de ir	nstalación ≤	[Nm]		10		2	:0	3	80	;	50
h ₁	Profundi	dad del agujero ≥	[mm]	45	50	65	60	75	65	95	90	120
h _{1,bit}		dad del agujero con con broca ≥	[mm]	57	62	77	76	91	85	115	114	144
h _{min}		mínimo del hormigón:	[mm]	80	80	80	80	80	80	100	120	160
L _{min}	Longitud anclaje:	l mínima total del	[mm]	35	40	55	50	65	55	85	75	105
t _{fix}	Espesor de la placa de anclaje 1):		[mm]	L-35	L-40	L-55	L-50	L-65	L-55	L-85	L-75	L-105
t _{fix}		de la placa de versión espárrago ¹⁾ :	[mm]	L-44	L-49	L-64	L-59	L-74	L-65	L-95	L-86	L-116
		Hexagonal tipo E,N	[mm]	10		13		15		18		
		Hexagonal tipo K:	[mm]		10		13		17		19	
	Llave	Hexagonal tipo J:	[mm]		13		-	-	-	-		
SW	de	Esférica:			10			3	1	6		18
	vaso:	Macho:	[mm]		13			7	-	-		
		Hembra:	[mm]		13		13 /	17 ²⁾		-		
		Espárrago:	[mm]		5			7		8		10
	Punta	Avellanada:	[-]		30			5		50	;	55
TX	hexalo-	Redonda:	[-]		40			5		-		
	bular	Alomada:	[-]		30			-		-		
dk		cabeza avellanada:	[mm]		12,4		1	8	2	21		24
Smin	Distanci anclajes	ia mínima entre s:	[mm]		35		35		5	60		75
Cmin	Distanc	ia mínima al borde:	[mm]		35		3	5	4	10		45
		de instalación:	-	500 W	ch GDS . T _{impact,r} o equiva	_{nax} 250	Bosch GDS 24, 800 W. T _{impact,max} 600 N equivalente				Nm, o	


Tornillo hormigón TXE	
Prestaciones	Anexo C3
Parámetros de instalación	

ETE 20/0046 - versión 7 del 18/09/2025 - página 12 de 36



L = longitud total del anclaje Vaso 13 para M10; vaso 17 para M12


Procedimiento de instalación

1. TALADRAR

Realizar un agujero en el material base con el diámetro y profundidad correctos, utilizando una broca en modo rotación y martillo.

2.a) SOPLAR Y LIMPIAR

Limpiar el agujero de los restos de polvo y fragmentos del taladrado utilizando una bomba de mano, aire comprimido o una aspiradora.

2 b) LIMPIEZA CON BROCA

Alternativamente a 2.a):

- Instalaciones hacia arriba: no se requiere limpieza.
- Instalaciones en horizontal o hacia abajo; no se requiere limpieza si se taladra el material base a una profundidad h_{1,bit}, y luego del proceso de taladrado la broca se introduce hacia adentro y hacia fuera 3 veces en modo rotatorio y con el modo martillo activado.

3. INSTALAR

Elegir una pistola de impacto o una llave dinamométrica que no sobrepase los pares máximos $T_{impact,max}$ o $T_{ins,max}$ respectivamente. Conectar el vaso de instalación o la punta hexalobular a la pistola o llave dinamométrica. Montar la cabeza del anclaje en el vaso / punta.

4. APPLICAR PAR

Guiar el anclaje en el agujero con una llave de impacto o una llave dinamométrica a través de la placa de anclaje hasta que la cabeza del anclaje esté en contacto con la placa de anclaje. El anclaje debe quedar apretado después de la instalación. No girar la cabeza del anclaje para aflojarlo.

Tornillo hormigón THE, TXE	
Prestaciones	Anexo C4
Procedimiento de instalación	

ETE 20/0046 - versión 7 del 18/09/2025 - página 13 de 36

<u>Tabla C4: Características esenciales bajo cargas estáticas o cuasi estáticas de tracción según</u> método A de acuerdo con EN 1992-4, versiones en acero al carbono TH / TF / TN / TK / TG

		nciales bajo car					Presta	aciones			
según i		státicas de tracci ersiones en acer N / TK / TG			6		8	3		10	
h _{nom}	Profund. nom	ninal instalación:	[mm]	35	40	55	50	65	55	75	85
Resiste	ncia a fallo d	del acero									
$N_{Rk,s}$	Resistencia d	característica:	[kN]		25,12		39	,14		54,81	
γMs	Coef. parcial	de seguridad 1):	[]					1,4			
Resiste	ncia a fallo d	de extracción									
$N_{Rk,p}$		característica en fisurado C20/25:	[kN]	5				≥ N ⁰ Rk.c ²⁾			
$N_{Rk,p}$		característica en urado C20/25:	[kN]	≥N ⁰ Rk.c ²⁾							
	Factor	C30/37	[]	1,16	1,12	1,22	1,21	1,22	1,22	1,17	1,22
Ψ_{c}	mayoración	C40/50	[]	1,28	1,22	1,41	1,39	1,41	1,41	1,30	1,41
	hormigón:	C50/60	[]	1,39	1,29	1,58	1,54	1,58	1,58	1,42	1,58
Resiste		oor cono de horr	nigón y t	fisuraci	ón						
h _{ef}	Profundidad	efectiva anclaje:	[mm]	26,0	30,0	43,0	37,5	50,5	41,5	58,5	67,0
k _{ucr,N}	Factor hormi	gón no fisurado:	[]				1	1,0			
k _{cr.N}	Factor hormi	gón fisurado:	[]					7,7			
γinst	Robustez:		[]	1,2	1,2	1,0	1,2	1,0	1,0	1,0	10
Scr,N	Fallo cono	Espaciado:	[mm]				3	x h _{ef}			
Ccr,N	hormigón:	Dist. al borde:	[mm]								•
N ⁰ Rk,sp	Resistencia d	caract. fisuración:	[kN]	min (N _{Rk,p} ; N ⁰ _{Rk,c})							
Scr,sp	Fallo por	Espaciado:	[mm]	90	90	170	130	200	140	190	210
C _{cr,sp}	fisuración:	Dist. al borde:	[mm]	45	45	85	65	100	70	95	105

remausericia de otras regulaciones nacionales y en alio a extracción no es decisivo. N_{Ric} calculado de acuerdo a en 1992-4

Características esenciales bajo cargas estáticas o cuasi estáticas de tracción					Prestaciones									
según i		ersiones en acer		12		14		16		•	18			
h _{nom}	Profund. nom	ninal instalación:	[mm]	75	105	75	115	80	120	90	140			
Resiste	encia a fallo	del acero												
$N_{Rk,s}$	Resistencia d	[kN]	7	4,48	10	5,45	124	,41	16	1,56				
γMs	Coef. parcial	de seguridad 1):	[]				1	1,4						
Resiste	encia a fallo	de extracción												
$N_{Rk,p}$		característica en fisurado C20/25:	[kN]	≥N ⁰ Rk.c ²⁾										
$N_{Rk,p}$		característica en urado C20/25:	[kN]	≥N ⁰ _{Rk.c} ²⁾										
	Factor	C30/37	[]	1,16	1,22	1,21	1,20	1,12	1,16	1,22	1,17			
Ψ_{c}	mayoración	C40/50	[]	1,29	1,41	1,39	1,37	1,21	1,28	1,40	1,32			
	hormigón:	C50/60	[]	1,40	1,58	1,55	1,51	1,29	1,39	1,57	1,42			
Resiste	encia a fallo	por cono de hori	nigón y	fisura	ción									
hef	Profundidad	efectiva anclaje:	[mm]	58.0	83,5	58,0	92,0	58,0	92,0	69,5	112,0			
k _{ucr,N}	Factor hormi	gón no fisurado:	[]				1	1,0						
k _{cr.N}	Factor hormi	gón fisurado:	[]				7	7,7						
γinst	Robustez:		[]				1	1,0						
Scr,N	Fallo cono	Espaciado:	[mm]				3 :	x h _{ef}						
Ccr,N	hormigón:	Dist. al borde:	[mm]		•		1,5	x h _{ef}	•					
N ⁰ Rk,sp	Resistencia d	caract. fisuración:	[kN]	min (N _{Rk,p} ; N ⁰ _{Rk,c})										
Scr,sp	Fallo por	Espaciado:	[mm]	190	220	190	230	180	280	230	350			
C _{cr,sp}	fisuración:	Dist. al borde:	[mm]	95	110	95	115	90	140	115	175			

Tornillo hormigón THE	
Prestaciones	Anexo C5
Características esenciales bajo cargas estáticas o cuasi estáticas de tracción	

ETE 20/0046 - versión 7 del 18/09/2025 - página 14 de 36

Tabla C5: Características esenciales bajo cargas estáticas o cuasi estáticas de tracción según método A de acuerdo con EN 1992-4, versiones en acero inoxidable TX

		enciales ba	•					Presta	ciones			
de trac	ción según	cuasi está método A, o inoxidable			6			8	1	0	1	2
h _{nom}	Profund. no instalación:	minal	[mm]	35	40	55	50	65	55	85	75	105
Resiste	encia a fallo	del acero		L				l .		,		•
N _{Rk,s}	Resistencia característic	ca:	[kN]		17,58		2	9,30	48	,13	69	,67
γMs	Coef. parcia seguridad 1)):	[]					1,	5			
Resiste	encia a fallo	de extracc	ión									
$N_{Rk,p}$	Resistencia característic hormigón no C20/25:	ca en	[kN]	5,5	≥ N ⁰ Rkc ²⁾	12,0	10,0	≥ N ⁰ Rkc ²⁾				
$N_{Rk,p}$	Resistencia característic hormigón fis C20/25:	ca en	[kN]	1,0	2,5	7,5	5,0	≥N ⁰ Rkc ²⁾	≥ N ⁰ Rkc ²⁾	≥ N ⁰ Rkc ²⁾	14,0	≥ N ⁰ Rkc ²⁾
	Factor	C30/37	[]	1,12	1,10	1,06	1,10	1,08	1,08	1,08	1,10	1,08
Ψ_{c}	mayoración		[]	1,21	1,18	1,10	1,17	1,15	1,14	1,14	1,18	1,15
Docieta	hormigón:	C50/60 por cono d	[]	1,29	1,24	1,14	1,23	1,19	1,19	1,18	1,25	1,19
	Profundidad		ie non		ĺ			l	l	l	l	
h _{ef}	anclaje:		[mm]	26,0	30,0	43,0	37,5	50,5	41,5	67,0	58.0	83,5
k _{ucr,N}	Factor horm fisurado:		[]					11	,0			
k _{cr.N}	Factor horm fisurado:	nigón	[]					7,	7			
γinst	Robustez:		[]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0
k _{ucr,N}	Factor horm fisurado:	nigón no	[]					11	,0			
k _{cr.N}	Factor horm fisurado:	nigón	[]					7,	7			
S _{cr,N}	Fallo	Espaciado:	[mm]					3 x	h _{ef}			
Ccr,N	cono hormigón:	Distancia al borde:	[mm]					1,5 :	κ h _{ef}			
$N^0_{Rk,sp}$	Resistencia fisuración:	caract.	[kN]	min (N _{Rk,p} ; N ⁰ _{Rk,c})								
Scr,sp	- Fallo por	Espaciado:	[mm]	90	110	190	130	220	140	230	190	240
Ccr,sp	fisuración:	Distancia al borde:	[mm]	45	55	95	65	110	70	115	95	120

Tornillo hormigón TXE	
Prestaciones	Anexo C6
Características esenciales bajo cargas estáticas o cuasi estáticas de tracción	

ETE 20/0046 - versión 7 del 18/09/2025 - página 15 de 36

 $^{^{1)}}$ En ausencia de otras regulaciones nacionales $^{2)}$ El fallo a extracción no es decisivo. $N^0_{Rk,c}$ calculado de acuerdo a EN 1992-4

<u>Tabla C6: Características esenciales bajo cargas estáticas o cuasi estáticas de cortante según método A de acuerdo con EN 1992-4, versiones en acero al carbono TH / TF / TN / TK / TG</u>

	terísticas esenciales bajo c					Presta	ciones					
estáticas o cuasi estáticas de cortante según método A, versiones en acero al carbono TH / TF / TN / TK / TG			6				8		10			
h _{nom}	Profund. nominal instalación:	[mm]	35	40	55	50	65	55	75	85		
Resis	tencia del acero bajo cargas	a cort	ante									
$V^0_{Rk,s}$	Resistencia característica:	[kN]		12,53		19	,57		27,40			
k ₇	Factor de ductilidad 2):	[]	0,78 0,80 0,78			0,	80	0,80				
M ⁰ Rk,s	Momento de flexión característico:	[Nm]	21,6			44,6			78,3			
γMs	Coef. parcial de seguridad 1):	[]		1,5								
Resis	tencia al fallo por desconch	amient	0									
k ₈	Factor desconchamiento:	[]	2,05	1,44	1,15	1,80	1,27	1,95	1,32	2,00		
γins	Robustez:	[]				1	,0					
Resis	tencia al fallo del borde del	hormig	ón									
lf	Longitud efectiva de anclaje bajo carga a cortante:	[mm]	26,0	30,0	43,0	37,5	50,5	41,5	58,5	67,0		
d _{nom}	Diámetro exterior del anclaje:	[mm]	6			8		10				
γinst	Robustez:	[]				1,0						

¹⁾ En ausencia de otras regulaciones nacionales

El valor del diámetro del agujero de paso en la placa de anclaje no cumple los valores establecidos en EN 1992-4 Tabla 6.1. No obstante, la resistencia del grupo bajo cargas a cortante ha sido verificada en la evaluación mediante ensayos y se ha tenido en cuenta en el factor k₇

	terísticas esenciales bajo c	_				Presta	ciones						
según	estáticas o cuasi estáticas de cortante según método A, versiones en acero al carbono TH / TF / TN / TK / TG			12		4	1	6	1	8			
h _{nom}	Profund. nominal instalación:	[mm]	75 105 75 115				80	120	90	140			
Resist	tencia del acero bajo cargas	a cort	ante										
$V^0_{Rk,s}$	Resistencia característica:	[kN]	37	,24	52	,72	57	,97	80	78			
k ₇	Factor de ductilidad ²⁾ :	[]				1,	00						
M ⁰ Rk,s	Momento de flexión característico:	[Nm]	126,5 218,			3,3 279		9,75	42	1,2			
γMs	Coef. parcial de seguridad 1):	[]		1,5									
Resist	tencia al fallo por desconch	amient	0										
k ₈	Factor desconchamiento:	[]	2,33	2,00	2,55	2,00	2,14	2,00	2,66	2,00			
γinst	Robustez:	[]				1	,0						
Resist	tencia al fallo del borde del	hormig	ón										
lf	Longitud efectiva de anclaje bajo carga a cortante:	[mm]	58,0	83,5	58,0	92,0	58,0	92,0	69,5	112,0			
d _{nom}	Diámetro exterior del anclaje:	[mm]	1	2	14		16		18				
γinst	Robustez:	[]		•	•	1	,0		•	•			

En ausencia de otras regulaciones nacionales

Tornillo hormigón THE	
Prestaciones	Anexo C7
Características esenciales bajo cargas estáticas o cuasi estáticas de cortante	

ETE 20/0046 - versión 7 del 18/09/2025 - página 16 de 36

El valor del diámetro del agujero de paso en la placa de anclaje no cumple los valores establecidos en EN 1992-4 Tabla 6.1. No obstante, la resistencia del grupo bajo cargas a cortante ha sido verificada en la evaluación mediante ensayos y se ha tenido en cuenta en el factor k₇

Tabla C7: Características esenciales bajo cargas estáticas o cuasi estáticas de cortante según método A de acuerdo con EN 1992-4, versiones en acero inoxidable TX

	terísticas esenciales bajo c cas o cuasi estáticas de cor		Prestaciones										
según	según método A, versiones en acero inoxidable TX			6			8		10		2		
h _{nom}	Profund. nominal instalación:	[mm]	35	40	55	50	65	55	85	75	105		
Resistencia del acero bajo cargas a cortante													
$V^0_{Rk,s}$	Resistencia característica:	[kN]		8,79		14	,65	24	,06	34,	84		
k ₇	Factor de ductilidad 2):	[]		1,00									
M ⁰ Rk,s	Momento de flexión característico:	[Nm]	14,52			31,17		65,68		146	,01		
γMs	Coef. parcial de seguridad 1):	[]					1,25						
Resist	tencia al fallo por desconch	amient	o										
k ₈	Factor desconchamiento:	[]	1,87	1,66	1,05	1,71	1,39	1,83	2,00	2,19	2,00		
γinst	Robustez:	[]					1,0						
Resist	tencia al fallo del borde del	hormiç	jón										
lf	Longitud efectiva de anclaje bajo carga a cortante:	[mm]	26,0	30,0	43,0	37,5	50,5	41,5	67,0	58,0	83,5		
d _{nom}	Diámetro exterior del anclaje:	[mm]	6			8		10		12			
γinst	Robustez:	[]					1,0						

Tornillo hormigón TXE	
Prestaciones	Anexo C8
Características esenciales bajo cargas estáticas o cuasi estáticas de cortante	

ETE 20/0046 - versión 7 del 18/09/2025 - página 17 de 36

En ausencia de otras regulaciones nacionales
El valor del diámetro del agujero de paso en la placa de anclaje no cumple los valores establecidos en EN 1992-4
Tabla 6.1. No obstante, la resistencia del grupo bajo cargas a cortante ha sido verificada en la evaluación
mediante ensayos y se ha tenido en cuenta en el factor k₇

 $\underline{\text{Tabla C8: Desplazamiento bajo cargas de servicio, versiones en acero al carbono TH / TF / TN / TK} \\ \underline{/ \, \text{TG}}$

	olazamiento bajo cargas de	_		Prestaciones									
	icio, versiones en acero al ca TF / TN / TK / TG	arbono		6		8	3	10					
h _{nom}	Profund. nominal instalación:	[mm]	35	40	55	50	65	55	75	85			
Desp	olazamientos bajo cargas a t	racción	en horn	nigón no	fisurad	lo							
N	Carga de servicio a tracción:	[kN]	1.98	3,85	6,61	4,48	8,41	6,26	10,48	12,85			
δ_{N0}	Desplazamiento corto plazo:	[mm]	0,03	0,05	0,05	0,04	0,05	0,06	0,09	0,10			
δ _{N∞}	Desplazamiento largo plazo:	[mm]	0,25	0,30	0,30	0,26	0,35	0,30	0,42	0,65			
Desp	olazamientos bajo cargas a t	racción	en horn	nigón fis	urado								
N	Carga de servicio a tracción:	[kN]	1,81	2,69	4,62	3,14	5,88	4,38	7,34	8,99			
δνο	Desplazamiento corto plazo:	[mm]	0,08	0,09	0,10	0,09	0,20	0,11	0,35	0,44			
δ _{N∞}	Desplazamiento largo plazo:	[mm]	0,99	0,99	1,60	1,08	1,92	1,13	2,00	1,91			
Desp	olazamientos bajo cargas a c	ortante	en horn	nigón no	fisurac	lo							
٧	Carga de servicio a cortante:	[kN]	5,97	5,54	5,97	9,32	9,32	12,21	13,05	13,05			
δ_{V0}	Desplazamiento corto plazo:	[mm]	1,50	1,61	1,70	1,03	1,03	1,11	1,21	1,24			
δν∞	Desplazamiento largo plazo:	[mm]	2,25	2,41	2,55	1,54	1,54	1,66	1,81	1,86			
Desp	olazamientos bajo cargas a c	ortante	en horn	nigón fis	surado								
٧	Carga de servicio a cortante:	[kN]	4,46	3,88	5,32	6,78	7,47	8,55	9,68	13,05			
δνο	Desplazamiento corto plazo:	[mm]	0,95	0,96	1,45	0,66	0,70	0,74	1,03	1,09			
δν∞	Desplazamiento largo plazo:	[mm]	1,42	1,44	2,17	0,99	1,05	1,11	1,54	1,63			

	olazamiento bajo cargas de					Presta	ciones			
	icio, versiones en acero al ca TF / TN / TK / TG	arbono	12		14		16		18	
h _{nom}	Profund. nominal instalación:	[mm]	75	105	75	115	80	120	90	140
Desp	olazamientos bajo cargas a ti	racción	en horn	nigón n	o fisurad	0				
Ν	Carga de servicio a tracción:	[kN]	10,35	17,87	10,35	20,67	10,35	20,67	13,57	27,77
δ_{N0}	Desplazamiento corto plazo:	[mm]	0,10	0,11	0,12	0,15	0,12	0,20	0,17	0,23
δ _{N∞}	Desplazamiento largo plazo:	[mm]	0,40	0,68	0,46	0,70	0,60	0,74	0,50	0,71
Desp	lazamientos bajo cargas a ti	nigón fi	surado							
N	Carga de servicio a tracción:	[kN]	7,24	12,51	7,24	14,47	7,24	14,47	9,50	19,44
δ_{N0}	Desplazamiento corto plazo:	[mm]	0,24	0,46	0,34	0,51	0,39	0,59	0,41	0,55
δ _{N∞}	Desplazamiento largo plazo:	[mm]	1,32	1,78	1,40	1,80	1,41	1,85	1,56	2,08
Desp	olazamientos bajo cargas a c	ortante	en horn	nigón n	o fisurad	0				
V	Carga de servicio a cortante:	[kN]	17,73	17,73	25,10	25,10	22.14	33,12	36,10	38,47
δνο	Desplazamiento corto plazo:	[mm]	1,65	1,65	1,87	1,87	1,04	1,61	1,96	2,03
δ∨∞	Desplazamiento largo plazo:	[mm]	2,48	2,48	2,81	2,81	1,56	2,42	2,94	3,05
Desp	olazamientos bajo cargas a c	ortante	en horn	nigón fi	surado					
V	Carga de servicio a cortante:	[kN]	16,88	17,73	18,47	25,10	15,50	28,94	25,27	38,47
δνο	Desplazamiento corto plazo:	[mm]	1,30	1,34	1,40	1,70	0,86	1,56	1,34	1,80
δ∨∞	Desplazamiento largo plazo:	[mm]	1,95	2,01	2,10	2,55	1,29	2,34	2,01	2,70

Tornillo hormigón THE	
Prestaciones	Anexo C9
Desplazamientos bajo cargas estáticas o cuasi estáticas de tracción y cortante	

ETE 20/0046 - versión 7 del 18/09/2025 - página 18 de 36

Tabla C9: Desplazamiento bajo cargas de servicio, versiones en acero inoxidable TX

	azamiento bajo cargas de		Prestaciones								
servic TX	io, versiones en acero inoxi	dable	6				8		10		12
h _{nom}	Profund. nominal instalación:	[mm]	35	40	55	50	65	55	85	75	105
Despla	azamientos bajo cargas a tra	acción e	en horn	nigón r	o fisur	ado					
N	Carga de servicio a tracción:	[kN]	2,34	3,21	4,93	4,25	7,00	5,22	10,71	8,62	17,88
δ_{N0}	Desplazamiento corto plazo:	[mm]	0.04	0,04	0,06	0,09	0,10	0,10	0,12	0,12	0,18
δ _{N∞}	Desplazamiento largo plazo:	[mm]	0,28	0,30	0,30	0,35	0,40	0,40	0,45	0,45	0,50
Despla	azamientos bajo cargas a tra	acción e	en horn	nigón f	isurado)					
N	Carga de servicio a tracción:	[kN]	0.56	1,07	3,20	2,06	4,90	3,65	7,50	5,63	12,51
δ_{N0}	Desplazamiento corto plazo:	[mm]	0,06	0,07	0,14	0,13	0,15	0,17	0,18	0,20	0,23
δ _{N∞}	Desplazamiento largo plazo:	[mm]	0,60	0,53	0,86	0,55	1,11	0,57	0,92	0,67	1,06
Despla	azamientos bajo cargas a co	rtante	en horr	nigón r	no fisur	ado					
V	Carga de servicio a cortante:	[kN]	4,36	5,06	5,06	7,70	8,37	9,50	13,75	18.90	19,91
δ_{V0}	Desplazamiento corto plazo:	[mm]	1,70	1,85	1,85	1,89	1,90	2,14	2,26	2,38	2,35
δ∨∞	Desplazamiento largo plazo:	[mm]	2,60	2,78	2,78	2,84	2,85	3,21	3,39	3,57	3,53
Despla	azamientos bajo cargas a co	rtante	en horr	nigón f	isurado)					
V	Carga de servicio a cortante:	[kN]	3.40	3,80	4,00	5,40	6,80	6,70	13,75	13,20	19,91
δνο	Desplazamiento corto plazo:	[mm]	1,72	1,80	1,81	1,84	1,87	1,95	2,25	2,16	2,35
δ _{V∞}	Desplazamiento largo plazo:	[mm]	2,58	2,70	2,72	2,76	2,81	2,93	3,38	3,24	3,53

Tornillo hormigón TXE	
Prestaciones	Anexo C10
Desplazamientos bajo cargas estáticas o cuasi estáticas de tracción y cortante	

ETE 20/0046 - versión 7 del 18/09/2025 - página 19 de 36

<u>Tabla C10: Características esenciales para prestaciones sísmicas categoría C1, versiones en acero al carbono TH / TF / TN / TK / TG</u>

	erísticas esenciales para				Presta	ciones		
	iones sísmicas categoría C1, es en acero al carbono TH / I / TG			6	8		10	
h _{nom}	Profundidad nominal de instalación:	[mm]	40	55	50	65	55	85
Resiste	ncia a fallo del acero bajo ca	rgas de t	racción					
N _{Rk,s,C1}	N _{Rk,s,C1} Resistencia característica: [kN]			,12	39	,14	54,	81
γMs	Coefic. parcial de seguridad 1):	[-]			1	,4		
Resiste	ncia a fallo del acero bajo ca	rgas de (cortante					
V _{Rk,s,C1}	Resistencia característica:	[kN]	5,9	9,4	8,7	11,7	21,4	19,2
γMs	Coefic. parcial de seguridad 1):	[-]			1	,5		
αgap	Factor para holgura anular:	[-]			0	,5		
Resiste	ncia a fallo de extracción							
$N_{Rk,p,C1}$	Resistencia característica en hormigón fisurado:	[kN]	5,0	5,0	6,2	8,8	6,5	14,7
γinst	Robustez:	[-]	1,2	1,0	1,2	1,0	1,0	1,0
Resiste	ncia a fallo de cono de hormi	igón						
h _{ef}	Profundidad efectiva:	[mm]	30,0	43,0	37,5	50,5	41,5	67,0
Scr,N	Espaciado:	[mm]			3 x	h _{ef}		
C _{cr,N}	Distanca al borde:	[mm]			1,5	x h _{ef}		
γinst	Robustez:	[-]	1,2	1,0	1,2	1,0	1,0	1,0

¹⁾ En ausencia de otras regulaciones nacionales

rísticas esenciales para jones sísmicas categoría C1.				Presta	ciones				
		12		14	16		18		
Profundidad nominal de instalación:	[mm]	75	105	115	80	120	140		
ncia a fallo del acero bajo ca	rgas de	tracción							
N _{Rk,s,C1} Resistencia característica: [kN]			48	105,45	124	1,41	161,56		
Coefic. parcial de seguridad 1):	[-]	1,4							
ncia a fallo del acero bajo ca	rgas de	cortante							
Resistencia característica:	[kN]	30,2	23,5	31,7	47,0	40,6	44,1		
Coefic. parcial de seguridad 1):	[-]			1	,5		•		
Factor para holgura anular:	[-]			0	,5				
ncia a fallo de extracción									
Resistencia característica en hormigón fisurado:	[kN]	10,3	18,2	23,2	10,6	30,4	35,3		
Robustez:	[-]			1	,0				
ncia a fallo de cono de hormi	gón								
Profundidad efectiva:	[mm]	58,0	83,5	92,0	58,0	92,0	112,0		
Espaciado:	[mm]	3 x h _{ef}							
Distanca al borde:	[mm]			1,5	x h _{ef}				
Robustez:	[-]	1,0							
	iones sísmicas categoría C1, es en acero al carbono TH / TG Profundidad nominal de instalación: ncia a fallo del acero bajo cal Resistencia característica: Coefic. parcial de seguridad ¹¹): ncia a fallo del acero bajo cal Resistencia característica: Coefic. parcial de seguridad ¹¹): Factor para holgura anular: ncia a fallo de extracción Resistencia característica en hormigón fisurado: Robustez: ncia a fallo de cono de hormi Profundidad efectiva: Espaciado: Distanca al borde:	iones sísmicas categoría C1, es en acero al carbono TH / TF / TN G Profundidad nominal de instalación: ncia a fallo del acero bajo cargas de Resistencia característica: [kN] Coefic. parcial de seguridad 11: [-] ncia a fallo del acero bajo cargas de Resistencia característica: [kN] Coefic. parcial de seguridad 11: [-] ncia a fallo del acero bajo cargas de Resistencia característica: [kN] Coefic. parcial de seguridad 11: [-] Factor para holgura anular: [-] ncia a fallo de extracción Resistencia característica en hormigón fisurado: [kN] Robustez: [-] ncia a fallo de cono de hormigón Profundidad efectiva: [mm] Espaciado: [mm] Distanca al borde: [mm]	iones sísmicas categoría C1, es en acero al carbono TH / TF / TN 3 Profundidad nominal de instalación: ncia a fallo del acero bajo cargas de tracción Resistencia característica: [kN] 74, Coefic. parcial de seguridad 11: [-] ncia a fallo del acero bajo cargas de cortante Resistencia característica: [kN] 30,2 Coefic. parcial de seguridad 11: [-] Factor para holgura anular: [-] Factor para holgura anular: [-] ncia a fallo de extracción Resistencia característica en hormigón fisurado: Robustez: [-] ncia a fallo de cono de hormigón Profundidad efectiva: [mm] 58,0 Espaciado: [mm] Distanca al borde: [mm]	iones sísmicas categoría C1, es en acero al carbono TH / TF / TN 3 Profundidad nominal de instalación: ncia a fallo del acero bajo cargas de tracción Resistencia característica: [kN] 74,48 Coefic. parcial de seguridad ¹¹): [-] ncia a fallo del acero bajo cargas de cortante Resistencia característica: [kN] 30,2 23,5 Coefic. parcial de seguridad ¹¹): [-] Factor para holgura anular: [-] Factor para holgura anular: [-] ncia a fallo de extracción Resistencia característica en hormigón fisurado: Robustez: [-] ncia a fallo de cono de hormigón Profundidad efectiva: [mm] 58,0 83,5 Espaciado: [mm] Distanca al borde: [mm]	Profundidad nominal de instalación:	Trestaciones Tres	Testaciones Testaciones		

¹⁾ En ausencia de otras regulaciones nacionales

Tornillo hormigón THE	
Prestaciones	Anexo C11
Características esenciales para prestaciones sísmicas categoría C1	

ETE 20/0046 - versión 7 del 18/09/2025 - página 20 de 36

<u>Tabla C11: Características esenciales para prestaciones sísmicas categoría C1, versiones en acero inoxidable TX</u>

	rísticas esenciales para		Prestaciones								
	iones sísmicas categoría (es en acero inoxidable TX		6		8		10		12		
h _{nom}	Profundidad nominal de instalación:	[mm]	40 55		50	65	55	85	75	105	
Resiste	ncia a fallo del acero bajo	cargas	de tracci	ión							
N _{Rk,s,C1} Resistencia característica: [kN]			17,	58	29	,30	48	,13	69	9,67	
γMs	Coefic. parcial de seguridad ¹⁾ :	[]				1,	,5				
Resiste	ncia a fallo del acero bajo	cargas	de corta	nte							
V _{Rk,s,C1}	Resistencia característica:	[kN]	5,83	8,44	8,04	10,00	15,16	19,86	25,96	30,80	
γMs	Coefic. parcial de seguridad ¹⁾ :	[-]	1,25								
αgap	Factor para holgura anular:	[]				0	,5				
Resiste	ncia a fallo de extracción										
N _{Rk,p,C1}	Resistencia característica en hormigón fisurado:	[kN]	2,12	5,70	3,64	8,77	6,69	12,84	9,87	21,53	
γinst	Robustez:	[]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	
Resiste	ncia a fallo de cono de ho	rmigón									
hef	Profundidad efectiva:	[mm]	30,0	43,0	37,5	50,5	41,5	67,0	58.0	83,5	
Scr,N	Espaciado:	[mm]	3 x h _{ef}								
C _{cr,N}	Distanca al borde:	[mm]				1,5	x h _{ef}				
γinst	Robustez:	[]	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,0	

¹⁾ En ausencia de otras regulaciones nacionales

Tornillo hormigón TXE	
Prestaciones	Anexo C12
Características esenciales para prestaciones sísmicas categoría C1	

ETE 20/0046 - versión 7 del 18/09/2025 - página 21 de 36

<u>Tabla C12: Características esenciales para prestaciones sísmicas categoría C2, versiones en acero al carbono TH / TF / TN / TK / TG</u>

	sticas esenciales para				Р	restacio	nes		
	nes sísmicas categoría C2, en acero al carbono TH / T	F/TN		B	10	12	14	16	18
h _{nom}	Profundidad nominal de instalación:	[mm]	50	65	85	105	115	120	140
Resistenc	ia a fallo del acero bajo car	gas de	tracción)					
N _{Rk,s,C2}	Resistencia característica:	[kN]	39,14	39,14	54,81	74,48	105,45	124,41	161,56
γMs	Coefic. parcial de seguridad ¹⁾ :	[-]				1,4			
Resistenc	ia a fallo del acero bajo car	gas de	cortante) :					
V _{Rk,s,C2}	Resistencia característica:	[kN]	8,4	11,7	19,2	23,5	31,7	33,5	44,1
γMs	Coefic. parcial de seguridad 1):	[-]	1,5						
α_{gap}	Factor para holgura anular:	[-]	0,5						
Resistenc	ia a fallo de extracción								
	Resistencia								
$N_{Rk,p,C2}$	característica en	[kN]	2,3	3,4	6,9	10,5	15,3	13,2	31,5
	hormigón fisurado:		4.0	4.0	4.0	4.0	4.0	4.0	4.0
γinst	Robustez:	[- <u>]</u>	1,2	1,0	1,0	1,0	1,0	1,0	1,0
	ia al fallo de cono de horm	_	07.5	50.5	07.0	00.5	00.0	00.0	440.0
h _{ef}	Profundidad efectiva:	[mm]	37,5	50,5	67,0	83,5	92,0	92,0	112,0
S _{cr,N}	Espaciado:	[mm]				3 x h _{ef}			
Ccr,N	Distancia al borde:	[mm]				1,5 x he	f		
γ _{inst} Desplazan	Robustez:	[-]				1,0			
		[mm]	0,36	0,16	0,22	0,41	0,25	0.58	0,66
δ _{N,C2} (DLS)	Desplazamiento en estado límite de daño:2)	[mm] [mm]	1,60	0,16	1,13	1,69	1,52	6,83	1,69
δν c2 (DLS)			1,08	2,70	3,11	2,61	2,32	2,02	1,89
δ _{N,C2} (ULS)	Desplazamiento en estado límite último: ²⁾	<u>[mm]</u> [mm]	2.54	4.74	7,43	9,03	6,29	9,61	8,79
DLS	Estado límite de d		, -	,	7,70	5,00	0,20	5,01	0,73
ULS	Estado límite de d Estado límite últin	no: ver E	N 1992-4	, 2.2.1)					

En ausencia de otras regulaciones nacionales

Tornillo hormigón THE	
Prestaciones	Anexo C13
Características esenciales para prestaciones sísmicas categoría C2	

ETE 20/0046 - versión 7 del 18/09/2025 - página 22 de 36

²⁾ Los desplazamientos mostrados representan valores medios

Tabla C13: Características esenciales bajo exposición a fuego, acero al carbono, cabezas E, K y J

Carac	terísticas esenci	Prestaciones									
expos	ición a fuego, ac	ero al			6			3		10	
carbon	no, cabezas E, K y	J			0		9	•	10		
h _{nom}	Profund. nominal inst	alación:	[mm]	35	40	55	50	65	55	75	85
Resiste	ncia a fuego del ac	ero									
	Resistencia	R30	[kN]	1,48		2.	62	4.21			
$N_{Rk,s,fi}$	característica a	R60	[kN]		1,12			97		3.16	
I NKK,S,TI	tracción:	R90	[kN]		0,76			33		2.10	
	traccion.	R120	[kN]		0,58			00		1.58	
	Resistencia	R30	[kN]		1,48			62		4.21	
$V_{Rk,s,fi}$	característica a	R60	[kN]		1,12			97		3.16	
V I∖K,5,II	cortante:	R90	[kN]		0,76			33		2.10	
		R120	[kN]		0,58			00		1.58	
		R30	[kN]		1,27			94		5,90	
$M^0_{Rk,s,fi}$	Momento a flexion	R60	[kN]		0,97		2,22		4,42		
,=,	característico:	R90	[kN]		0,66		1,49		2,94		
B		R120	[kN]	0,50			1,13			2,21	
Resiste	encia a fuego a extra				ı	ı	ı	ı	ı	ı	ı
N _{Rk.p.fi}	Resistencia	R30 – R90	[kN]	1,14	1,41	2,43	1,98	3,09	2,30	3,85	4,72
47	característica:	R120	[kN]	0,91	1,13	1,94	1,58	2,47	1,84	3,08	3,78
Resiste	encia a fuego a conc	o del hormi	igón ¹⁾								
$N_{Rk,p,fi}$	Resistencia	R30 -R90	[kN]	0,59	0,85	2,09	1,48	3,12	1,91	4,51	6,33
	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	1,53	3,61	5,06
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]				4 >	c h _{ef}			
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]		35		3	5		50	
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]				2 x	(h _{ef}			
C _{min,fi} Distancia mínima al R30 - [mm]					c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm						ıra, la
Resiste	ncia a fuego a desc	conchamie	nto								
k ₈	Coeficiente desconchamiento:	R30 - R120	[mm]	2,05	1,44	1,15	1,80	1,27	1,95	1,32	2,00

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,ñ} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C14
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 23 de 36

<u>Tabla C14: Características esenciales bajo exposición a fuego, acero al carbono, cabezas E, K y J (cont.)</u>

	rísticas esenciales						Presta	ciones			
	ión a fuego, acero	o al car	bono,	12	,	1	14		16	1	18
cabeza	s E, K y J			12			-	10		10	
h _{nom}	Profund. nominal instalación:		[mm]	75	105	75	115	80	120	90	140
Resiste	ncia a fuego del ad	cero									
	Resistencia	R30	[kN]	7,6	61	9,	,10	12	2,04	14,88	
N _{Rk,s,fi}	característica a	R60	[kN]	5,2	24	6,	,80	8	,99	11	,11
INKK,S,fi	tracción:	R90	[kN]	3,4			49	5	,93		,33
	tracción.	R120	[kN]	2,5		3,	,33	4	,41	5	,45
	Resistencia	R30	[kN]	7,6	61	9,	,10	12	2,04	14	,88
$V_{Rk,s,fi}$	característica a	R60	[kN]	5,2	24	6,	,80		,99	11	,11
V Rk,s,fi	cortante:	R90	[kN]	3,4	6	4,	49	5	,93	7	,33
	containte.	R120	[kN]	2,5	57	3,	,33	4	,41	5	,45
		R30	[Nm]	11,9	96		3,12	27	7.56	38	3,52
$M^0_{Rk,s,fi}$	Momento a flexion	R60	[Nm]	8,9			3,53),57	28,75	
IVI~Rk,s,fi	característico:	R90	[Nm]	5,9	00	8,	,93	13	3,59	18,99	
		R120	[Nm]	4,38		6,63		10,09		14,10	
Resiste	ncia a fuego a extr	acción									
$N_{Rk,p,fi}$	Resistencia	R30- R90	[kN]	3,80	6,57	3,80	7,60	3,80	7,60	4,99	10,20
i vixx,p,ii	característica:	R120	[kN]	3,04	5,25	3,04	6,08	3,04	6,08	3,99	8,16
Resiste	ncia a fuego a con	o del ho	ormigón	1 ¹⁾							
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	4,41	10,97	4,41	13,98	4,41	13,98	6,93	22,86
· •IXK,C,II	característica:	R120	[kN]	3,53	8,78	3,53	11,18	3,53	11,18	5,55	18,29
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]				4 x	h _{ef}			
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	75	5	8	30		80	9	90
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]				2 x	h _{ef}			
C _{min,fi} Distancia mínima R30 - [mm]				c _{min} = 2 x					más de una ≥ 300 mm	cara, la d	istancia
Resiste	ncia a fuego a des	concha	miento								
k ₈	Coeficiente desconchamiento:	R30 - R120	[mm]	2,33	2,00	2,55	2,00	2,14	2,00	2,66	2,00

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,fi} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C15
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 24 de 36

<u>Tabla C15: Características esenciales bajo exposición a fuego, acero al carbono, cabezas N, A, W y S</u>

	erísticas esenciales	•		Prestaciones							
	ción a fuego, acero	al carbon	10,						40		
cabeza	as N, A, W y S				6		8	3	10		
h _{nom}	Profund. nominal inst		[mm]	35	40	55	50	65	55	75	85
Resiste	ncia a fuego del ac	ero									
	Resistencia	R30	[kN]		0,26		0,	45		1,07	
N _{Rk.s.fi}	característica a	R60	[kN]		0,23		0,	41		0,93	
INKK,S,fI	tracción:	R90	[kN]		0,18		0,	32		0,71	
	tracción.	R120	[kN]		0,13			23		0,57	
	Resistencia	R30	[kN]		0,26			45		1,07	
$V_{Rk,s,fi}$	característica a	R60	[kN]		0,23		0,			0,93	
V RK,S,fi	cortante:	R90	[kN]		0,18		0,	32		0,71	
	cortante.	R120	[kN]		0,13			23		0,57	
		R30	[kN]		0,22		0,	52		1,52	
$M^0_{Rk,s,fi}$	Momento a flexion	R60	[kN]		0,20			46		1,32	
IVI"RK,S,fi	característico:	R90	[kN]	0,16			0,36		1,02		
		R120	[kN]	0,11			0,26		0,81		
Resiste	encia a fuego a extra	acción									
$N_{Rk,p,fi}$	Resistencia	R30 – R90	[kN]	1,14	1,41	2,43	1,98	3,09	2,30	3,85	4,72
і чкк,р,п	característica:	R120	[kN]	0,91	1,13	1,94	1,58	2,47	1,84	3,08	3,78
Resiste	encia a fuego a conc	del hormi	igón ¹⁾								
$N_{Rk,p,fi}$	Resistencia	R30 -R90	[kN]	0,59	0,85	2,09	1,48	3,12	1,91	4,51	6,33
· • • • • • • • • • • • • • • • • • • •	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	1,53	3,61	5,06
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]				4 x	(h _{ef}			
S _{min,fi}	Distancia mínima entre anclajes	R30 - R120	[mm]		35		3	5		50	
C _{cr.N,fi}	Distancia crítica al borde:	R30 - R120	[mm]				2 x	(h _{ef}			
Distancia mínima al R30 - [mm]					c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm						ira, la
Resiste	ncia a fuego a desc	onchamie	nto				-				
k ₈	Coeficiente desconchamiento:	R30 - R120	[mm]	2,05	1,44	1,15	1,80	1,27	1,95	1,32	2,00

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,fi} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C16
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 25 de 36

<u>Tabla C16: Características esenciales bajo exposición a fuego, acero al carbono, cabezas N, A, W y S (cont.)</u>

	rísticas esenciales		_				Presta	ciones						
exposición a fuego, acero al carbono,				12	`		4		4.0	18				
cabeza	s N, A, W y S			14	2	14		16		18				
h _{nom}	Profund. nominal instalación:		[mm]	75	105	75	115	80	120	90	140			
Resiste	ncia a fuego del ad	ero			•	•	•	•		•				
		R30	[kN]	2,0)1	2.	99	3	,53	4.	74			
N.	Resistencia	R60	[kN]	1,5	51	2.	24	2	.65	3.	56			
$N_{Rk,s,fi}$	característica a	R90	[kN]	1,3	31	1,	94	2	,29		08			
	tracción:	R120	[kN]	1,0)1	1,	50	1	,76	2.	37			
	Б	R30	[kN]	2,0)1	2,	99	3	,53	4.	74			
.,	Resistencia	R60	[kN]	1,5	51	2,	24	2	,65	3,	56			
$V_{Rk,s,fi}$	característica a	R90	[kN]	1,3	31	1,	94	2	,29	3,	.08			
	cortante:	R120	[kN]	1,0)1	1,	50	1	,76		37			
		R30	[Nm]	3,4	12	6,	19	7	,94	12,37				
M ⁰ Rk.s.fi	Momento a flexion	R60	[Nm]	2,5	6	4,	64	5,95		9,28				
IVI~Rk,s,fi	característico:	R90	[Nm]	2,22 4,02 5,16		4,02		5,16		5,16		8,	8,04	
		R120	[Nm]	1,7	' 1	3,10		3,97		6,	18			
Resiste	ncia a fuego a extr	acción												
N _{Rk.p.fi}	Resistencia	R30- R90	[kN]	3,80	6,57	3,80	7,60	3,80	7,60	4,99	10,20			
I NKK,p,īi	característica:	R120	[kN]	3,04	5,25	3,04	6,08	3,04	6,08	3,99	8,16			
Resiste	ncia a fuego a con	o del ho	ormigón	¹⁾										
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	4,41	10,97	4,41	13,98	4,41	13,98	6,93	22,86			
T TICK,U,II	característica:	R120	[kN]	3,53	8,78	3,53	11,18	3,53	11,18	5,55	18,29			
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]				4 x	h _{ef}						
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	75	5	8	30		80	9	90			
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]				2 x	h _{ef}						
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x		•	-		más de una ≥ 300 mm	cara, la d	istancia			
Resiste	ncia a fuego a des	concha	miento											
k ₈	Coeficiente desconchamiento:	R30 - R120	[mm]	2,33	2,00	2,55	2,00	2,14	2,00	2,66	2,00			

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,f} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C17
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 26 de 36

Tabla C17: Características esenciales bajo exposición a fuego, acero al carbono, cabeza P

	terísticas esenc		ajo		ı	Prestacio	nes		
	sición a fuego, a no, cabeza P	cero al			6		8	3	
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	60	
Resiste	encia a fuego del ad	cero							
	Desistancia	R30	[kN]		0,87		2,	76	
NI	Resistencia característica a	R60	[kN]		0,59		2,0	06	
$N_{Rk,s,fi}$	tracción:	R90	[kN]		0,30		1,3	35	
	tracción.	R120	[kN]		0,16		1,0	00	
	Decistonsis	R30	[kN]		0,87		2,	76	
$V_{Rk,s,fi}$	Resistencia característica a	R60	[kN]		0,59		2,0	06	
V Rk,s,fi	cortante:	R90	[kN]		0,30		1,3	35	
	containte.	R120	[kN]		0,16		1,0	00	
		R30	[Nm]		0,75		3,		
$M^0_{Rk,s,fi}$	Momento a flexion	R60	[Nm]		0,51	2,31			
IVI RK,S,fi	característico:	R90	[Nm]	0,26			1,52		
		R120	[Nm]		0,14		1,12		
Resiste	encia a fuego a extr	acción							
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	1,14	1,41	2,43	1,98	3,09	
, = ,	característica:	R120	[kN]	0,91	1,13	1,94	1,58	2,47	
Resiste	encia a fuego a con	o del ho	rmigór	1 ¹⁾					
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	0,59	0,85	2,09	1,48	3,12	
, • ,	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]			4 x h _{ef}			
S _{min,fi}	Distancia mínima entre anclajes	R30 - R120	[mm]		35		3	5	
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]			2 x h _{ef}			
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]		cara, la dis		uego viene o anclaje al bo mm		
Resiste	encia a fuego a des	concha	miento						
k ₈	Coeficiente desconchamiento:	R30- R120	[mm]	2,05	1,44	1,15	1,80	1,27	

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,f} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C18
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 27 de 36

Tabla C18: Características esenciales bajo exposición a fuego, acero al carbono, cabeza T

	terísticas esen		ı	Prestaciones				
	sición a fuego, a no, cabeza T	acero al			6			
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55		
Resiste	encia a fuego del a	cero						
		R30	[kN]		1,62			
	Resistencia	R60	[kN]		1,14			
$N_{Rk,s,fi}$	característica a	R90	[kN]		0.67			
	tracción:	R120	[kN]		0.43			
	Б	R30	[kN]		1,62			
\ /	Resistencia	R60	[kN]		1,14			
$V_{Rk,s,fi}$	característica a	R90	[kN]		0.67			
	cortante:	R120	[kN]		0.43			
		R30	[Nm]		1,40			
N 40	Momento a flexion	R60	[Nm]		0.99			
M^0 _{Rk,s,fi}	característico:	R90	[Nm]		0.58			
		R120	[Nm]		0.37			
Resiste	encia a fuego a ext	racción		•				
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	1,14	1,41	2,43		
	característica:	R120	[kN]	0,91	1,13	1,94		
Resiste	encia a fuego a co	no del ho	ormigór	1 ¹⁾				
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	0,59	0,85	2,09		
, , ,	característica:	R120	[kN]	0,47	0,68	1,67		
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]		4 x h _{ef}			
S _{min,fi}	Distancia mínima entre anclajes	R30 - R120	[mm]		35			
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]		2 x h _{ef}			
C _{min} ,fi	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm				
Resiste	encia a fuego a des	sconcha	miento					
k ₈	Coeficiente desconchamiento:	R30- R120	[mm]	2,05	1,44	1,15		

¹⁾ Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,fl} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C19
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 28 de 36

Tabla C19: Características esenciales bajo exposición a fuego, acero al carbono, cabeza M

	terísticas esenc	Prestaciones							
	sición a fuego, a no, cabeza M	6			8				
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	60	
Resiste	encia a fuego del ac	ero							
		R30	[kN]		0,87		0,8	87	
NI	Resistencia	R60	[kN]		0,72		0,	72	
$N_{Rk,s,fi}$	característica a tracción:	R90	[kN]		0,58		0,	58	
	tracción.	R120	[kN]		0,51		0,	51	
	Desistancia	R30	[kN]		0,87		0,8	87	
V	Resistencia característica a	R60	[kN]		0,72		0,	72	
$V_{Rk,s,fi}$	caracteristica a	R90	[kN]		0,58		0,	58	
	cortaine.	R120	[kN]		0.51		0.9	51	
		R30	[Nm]		0.75		0.7		
$M^0_{Rk,s,fi}$	Momento a flexion	R60	[Nm]		0,62	0,62			
IVI RK,S,fi	característico:	R90	[Nm]		0,50		0,50		
		R120	[Nm]		0,44		0,44		
Resiste	encia a fuego a extr	acción							
N _{Rk.c.fi}	Resistencia	R30 - R90	[kN]	1,14	1,41	2,43	1,98	3,09	
	característica:	R120	[kN]	0,91	1,13	1,94	1,58	2,47	
Resiste	encia a fuego a con	o del ho	rmigór	1 ¹⁾					
N _{Rk.c.fi}	Resistencia	R30 - R90	[kN]	0,59	0,85	2,09	1,48	3,12	
, • ,	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]			4 x h _{ef}			
S _{min,fi}	Distancia mínima entre anclajes	R30 - R120	[mm]	35 35					
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]			2 x h _{ef}			
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x h _{er} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm					
Resiste	encia a fuego a des	concha	miento						
k ₈	Coeficiente desconchamiento:	R30- R120	[mm]	2,05	1,44	1,15	1,80	1,27	

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,f} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C20
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 29 de 36

Tabla C20: Características esenciales bajo exposición a fuego, acero al carbono, cabeza F

	terísticas esenc	Prestaciones						
-	sición a fuego, ao no, cabeza F		8					
	Rosca interna		[-]	M8/M10	M10	M8/M10	M10); M12
h _{nom}	Profund. nominal inst	alación:	[mm]	35	40	55	50	65
Resiste	encia a fuego del ac	ero						
	Desistensis	R30	[kN]	0,66	1,01	0,66	1	,44
	Resistencia	R60	[kN]	0,56	0,83	0,56	1	,07
$N_{Rk,s,fi}$	característica a tracción:	R90	[kN]	0,46	0,65	0,46	C	,70
	traccion:	R120	[kN]	0,41	0,57	0,41	C	,51
	5	R30	[kN]	0,66	1,01	0,66	1	,44
.,	Resistencia	R60	[kN]	0,56	0,83	0,56	1	,07
$V_{Rk,s,fi}$	característica a	R90	[kN]	0,46	0,65	0,46		,70
	cortante:	R120	[kN]	0,41	0,57	0,41		,51
		R30	[Nm]	0,57	0,87	0,57	1	,62
N 40	Momento a flexion	R60	[Nm]	0,48	0,72	0,48	1	,20
M^0 _{Rk,s,fi}	característico:	R90	[Nm]	0,40	0,56	0,40		,78
		R120	[Nm]	0,35	0,49	0,35	0,57	
Resiste	encia a fuego a extr	acción						
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	1,14	1,41	2,43	1,98	3,09
r ringojii	característica:	R120	[kN]	0,91	1,13	1,94	1,58	2,47
Resiste	encia a fuego a con	o del ho	rmigór	1 ¹⁾				
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	0,59	0,85	2,09	1,48	3,12
,-,	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]			4 x h _{ef}		
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]		35			35
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]			2 x h _{ef}		
C _{min,fi}	Distancia mínima al R30 - c _{min} = 2 x h _{ef} ; si el ataque de fuego viene							
Resiste	encia a fuego a desc	conchar	miento					
k ₈	Coeficiente desconchamiento	R30- R120	[mm]	2,05	1,44	1,15	1,80	1,27
		-						

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,f} = 1,0

Tornillo hormigón THE	
Prestaciones	Anexo C21
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 30 de 36

Tabla C21: Características esenciales bajo exposición a fuego, acero inoxidable, cabezas E, K y J

	erísticas esenciale	Prestaciones											
exposición a fuego, acero					_			•		10		12	
inoxidable, cabezas E, K y J				6			8	1	10	1	12		
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	65	55	85	75	105	
Resiste	ncia a fuego del a	acero											
Resistencia		R30	[kN]		1,48		2	.62	4.	.21	7,	,61	
N _{Rk.s.fi}	característica a	R60	[kN]		1,12		1	.97	3.	.16	5,	24	
INRk,s,fi	tracción:	R90	[kN]		0,76		1	.33	2.	.10	3,	46	
	tracción.	R120	[kN]		0,58		1	.00	1.	.58	2,	57	
	Danistansia	R30	[kN]		1,48		2	.62	4.	.21	7,	,61	
V	Resistencia característica a	R60	[kN]		1,12		1	.97	3.	.16	5,	24	
$V_{Rk,s,fi}$	caracteristica a	R90	[kN]		0,76		1	.33	2.	.10	3,	46	
	cortaine.	R120	[kN]		0,58		1	.00	1.	.58	2,	57	
	Mamanta	R30	[Nm]		1,27		2	,94	5,	,90	11	,96	
M^0 _{Rk,s,fi}	Momento a flexion	R60	[Nm]		0,97		2,22		4,	42	8,93		
IVI*Rk,s,fi	característico:	R90	[Nm]	0,66		1,49		2,94		5,90			
	Caracteristico.	R120	[Nm]		0,50		1	,13	2,	21	4,38		
Resiste	ncia a fuego a ex	tracció	n										
$N_{Rk,p,fi}$	Resistencia característica:	R30- R90	[kN]	0,25	0,63	1,88	1,25	3,09	2,30	4,72	3,50	6,57	
	caracteristica:	R120	[kN]	0,20	0,50	1,50	1,00	2,47	1,84	3,78	2,80	5,25	
Resiste	ncia a fuego a co	no del	hormig	ón 1)									
N _{Rk,c,fi}	Resistencia	R30- R90	[kN]	0,59	0,85	2,09	1,48	3,12	1,91	6,33	4,41	10,97	
***	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	1,53	5,06	3,53	8,78	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]					4 x h∈	ef				
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	35 35 50 75						7 5			
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}									
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]	C _{min} =	2 x h _{ef} ; s			go viene de borde deb			a, la dista	ncia del	
Resiste	ncia a fuego a de	sconch	amient	0			-						
k ₈	Coeficiente desconchamiento	R30 - R120	[mm]	1,87	1,66	1,05	1,71	1,39	1,83	2,00	2,19	2,00	
									1				

¹⁾ Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura.

En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego $\gamma_{m,fi}$ = 1,0

Tornillo hormigón TXE	
Prestaciones	Anexo C22
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 31 de 36

<u>Tabla C22: Características esenciales bajo exposición a fuego, acero inoxidable, cabezas A, N, W y S</u>

Características esenciales					Prestaciones								
bajo exposición a fuego, acero inoxidable, cabezas A, N, W y S				6		8		10		12			
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	65	55	85	75	105	
Resiste	ncia a fuego del a	acero											
	Resistencia	R30	[kN]		0,24		0	,79	1	,64	2,	95	
N _{Rk.s.fi}	característica a	R60	[kN]		0,22		0	,63	1	,31	2,	45	
I NKK,S,TI	tracción:	R90	[kN]		0,17			,48		,05		,96	
	traccion.	R120	[kN]		0,12			,40	0	,92	1,	57	
	Resistencia	R30	[kN]		0,24		0	,79	1.	,64	2,	,95	
V _{Rk.s.fi}	característica a	R60	[kN]		0,22			,63		,31		45	
V KK,S,TI	cortante:	R90	[kN]		0,17			,48	1.	,05	1,96		
	cortante.	R120	[kN]		0,12			,40		,92		57	
	Momento a	R30	[Nm]		0,20		0,84			,24	4,94		
M ⁰ Rk.s.fi	flexion	R60	[Nm]	0,18		0,67		1,79		4,12			
IVI KK,S,II	característico:	R90	[Nm]		0,14		0,51		1,43		3,29		
		R120	[Nm]	0,10		0,42		1,26		2,63			
Resiste	ncia a fuego a ex		1										
$N_{Rk,p,fi}$	Resistencia característica:	R30- R90	[kN]	0,25	0,63	1,88	1,25	3,09	2,30	4,72	3,50	6,57	
		R120	[kN]	0,20	0,50	1,50	1,00	2,47	1,84	3,78	2,80	5,25	
Resiste	ncia a fuego a co	no del l	normig	ón 1)									
$N_{Rk,c,fi}$	Resistencia característica:	R30- R90	[kN]	0,59	0,85	2,09	1,48	3,12	1,91	6,33	4,41	10,97	
	caracteristica.	R120	[kN]	0,47	0,68	1,67	1,19	2,50	1,53	5,06	3,53	8,78	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]					4 x h	ef				
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	35			;	35	50		7	75	
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}									
C _{min,fi}	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm									
Resiste	ncia a fuego a de	sconch	amient	0									
k ₈	Coeficiente desconchamiento	R30 - R120	[mm]	1,87	1,66	1,05	1,71	1,39	1,83	2,00	2,19	2,00	

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura.

En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego $\gamma_{m,fi} = 1,0$

Tornillo hormigón TXE	
Prestaciones	Anexo C23
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 32 de 36

Tabla C23: Características esenciales bajo exposición a fuego, acero inoxidable, cabeza P

	terísticas esenc	Prestaciones							
	sición a fuego, a able, cabeza P	6			8				
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	60	
Resiste	encia a fuego del ad	ero							
	Desistancia	R30	[kN]		0,87		2,	76	
NI	Resistencia característica a	R60	[kN]		0,59		2,0	06	
$N_{Rk,s,fi}$	tracción:	R90	[kN]		0,30		1,3	35	
	tracción.	R120	[kN]		0,16		1,0	00	
	Resistencia	R30	[kN]		0,87		2,	76	
$V_{Rk,s,fi}$	característica a	R60	[kN]		0,59		2,0	06	
V Rk,s,fi	cortante:	R90	[kN]		0,30		1,3	35	
	containte.	R120	[kN]		0,16		1,0	00	
		R30	[Nm]		0,75		3,		
M^0 Rk,s,fi	Momento a flexion	R60	[Nm]		0,51	2,31			
IVI RK,S,fi	característico:	R90	[Nm]		0,26	1,52			
		R120	[Nm]		0,14		1,	12	
Resiste	encia a fuego a extr	acción							
No f	Resistencia	R30 - R90	[kN]	0,25	0,63	1,88	1,25	3,09	
, = ,	característica:	R120	[kN]	0,20	0,50	1,50	1,00	2,47	
Resiste	encia a fuego a con	o del ho	rmigór	1 ¹⁾					
N _{Rk,c,fi}	Resistencia	R30 - R90	[kN]	0,59	0,85	2,09	1,48	3,12	
,-,	característica:	R120	[kN]	0,47	0,68	1,67	1,19	2,50	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]			4 x h _{ef}			
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	35 35					
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}					
Cmin,fi	Distancia mínima al R30 - R120								
Resiste	encia a fuego a des	concha	miento						
k ₈	Coeficiente desconchamiento:	R30- R120	[mm]	2,05	1,44	1,15	1,80	1,27	

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura. En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego γ_{m,f} = 1,0

Tornillo hormigón TXE	
Prestaciones	Anexo C24
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 33 de 36

Tabla C24: Características esenciales bajo exposición a fuego, acero inoxidable, cabeza T

	erísticas esenciales	Prestaciones								
cabeza	ción a fuego, acero a T		6							
h _{nom}	Profund. nominal inst	alación:	[mm]	35	40	55				
Resistencia a fuego del acero										
		R30	[kN]		1,62					
NI	Resistencia característica a	R60	[kN]		1,14					
$N_{Rk,s,fi}$	tracción:	R90	[kN]		0.67					
	liaccion.	R120	[kN]		0.43					
	Resistencia	R30	[kN]		1,62					
$V_{Rk,s,fi}$	característica a	R60	[kN]		1,14					
V KK,S,fi	caracteristica a	R90	[kN]		0.67					
	cortanto.	R120	[kN]		0.43					
		R30	[Nm]		1,40					
M^0 _{Rk,s,fi}	Momento a flexion	R60	[Nm]		0.99					
IVI RK,S,fi	característico:		[Nm]	0.58						
		R120	[Nm]	0.37						
Resiste	encia a fuego a extr	acción								
$N_{Rk,p,fi}$	Resistencia característica:	R30- R90	[kN]	0,25	0,63	1,88				
		R120	[kN]	0,20	0,50	1,50				
Resiste	encia a fuego a con	o del ho	rmigór	1)						
N _{Rk,c,fi}	Resistencia característica:	R30- R90	[kN]	0,59	0,85	2,09				
	Caracteristica.	R120	[kN]	0,47	0,68	1,67				
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]		4 x h _{ef}					
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]		35					
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}						
Distancia mínima al borde Distancia mínima al borde Distancia mínima al borde Cmin,fi Cmin = 2 x her; si el ataque de fuego vien desde más de una cara, la distancia de anclaje al borde debe ser ≥ 300 mm						a distancia del				
Resiste	encia a fuego a desc	conchai	miento							
k ₈	Coeficiente desconchamiento	R30 - R120	[mm]	1,87	1,66	1,05				

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura.

En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego $\gamma_{m,fi}=1,0$

Tornillo hormigón TXE	
Prestaciones	Anexo C25
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 34 de 36

Tabla C25: Características esenciales bajo exposición a fuego, acero inoxidable, cabeza M

Características esenciales bajo				Prestaciones					
exposición a fuego, acero inoxidable, cabeza M			6			8			
h _{nom}	Profund. nominal instal	ación:	[mm]	35	40	55	50	65	
Resiste	encia a fuego del ace	ro							
$N_{Rk,s,fi}$	Resistencia característica a tracción:	R30	[kN]	0,87			0,87		
		R60	[kN]	0,72			0,72		
		R90	[kN]	0,58			0,58		
		R120	[kN]	0,51			0,51		
	Desistancia	R30	[kN]	0,87			0,87		
$V_{Rk,s,fi}$	Resistencia característica a	R60	[kN]	0,72			0,72		
	cortante:	R90	[kN]	0,58			0,58		
		R120	[kN]	0.51			0.51		
		R30	[Nm]	0.75				0.75	
M^0 Rk,s,fi	Momento a flexion	R60	[Nm]	0,62			0,62		
IVI RK,S,fi	característico:	R90	[Nm]	0,50			0,50		
		R120	[Nm]		0,44	0,44			
Resiste	encia a fuego a extra	cción							
$N_{Rk,p,fi}$	Resistencia característica:	R30- R90	[kN]	0,25	0,63	1,88	1,25	3,09	
4.		R120	[kN]	0,20	0,50	1,50	1,00	2,47	
Resiste	encia a fuego a cono	del horr	nigón ¹⁾						
N _{Rk,c,fi}	Resistencia característica:	R30- R90	[kN]	0,59	0,85	2,09	1,48	3,12	
		R120	[kN]	0,47	0,68	1,67	1,19	2,50	
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]	4 x h _{ef}					
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	35 35			35		
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}					
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm					
Resiste	encia a fuego a desco	nchami	ento						
k ₈	Coeficiente desconchamiento	R30 - R120	[mm]	1,87	1,66	1,05	1,71	1,39	

¹⁾ Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura.

En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego $\gamma_{m,li}=1,0$

Tornillo hormigón TXE	
Prestaciones	Anexo C26
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 35 de 36

Tabla C26: Características esenciales bajo exposición a fuego, acero inoxidable, cabeza F

	terísticas esenc	Prestaciones						
exposición a fuego, acero inoxidable, cabeza F			6			8		
	Rosca interna:		[-]	M8/M10	M10	M8/M10	M10); M12
h _{nom}	Profund. nominal instalación:		[mm]	35	40	55	50	65
Resistencia a fuego del acero								
$N_{Rk,s,fi}$	Resistencia característica a tracción:	R30 R60 R90 R120	[kN] [kN] [kN]	0,66 0,56 0,46 0,41	1,01 0,83 0,65 0,57	0,66 0,56 0,46 0,41	1,44 1,07 0,70 0,51	
V _{Rk,s,fi}	Resistencia característica a cortante:	R30 R60 R90 R120	[kN] [kN] [kN]	0,66 0,56 0,46 0,41	1,01 0,83 0,65 0,57	0,66 0,56 0,46 0,41	1,44 1,07 0,70 0.51	
$M^0_{Rk,s,fi}$	Momento a flexion característico:	R30 R60 R90 R120	[Nm] [Nm] [Nm] [Nm]	0,57 0,48 0,40 0,35	0,87 0,72 0,56 0,49	0,57 0,48 0,40 0,35	1,62 1,20 0,78 0,57	
Resiste	ncia a fuego a extr	acción						
N _{Rk,c,fi}	Resistencia característica:	R30 - R90	[kN]	0,25	0,63	1,88	1,25	3,09
		R120	[kN]	0,20	0,50	1,50	1,00	2,47
Resiste	ncia a fuego a con	o del ho	rmigór	า ¹⁾				
N _{Rk,c,fi}	Resistencia característica:	R30 - R90	[kN]	0,59	0,85	2,09	1,48	3,12
		R120	[kN]	0,47	0,68	1,67	1,19	2,50
Scr.N,fi	Distancia crítica entre anclajes:	R30 - R120	[mm]	4 x h _{ef}				
Smin,fi	Distancia mínima entre anclajes	R30 - R120	[mm]	35 35			35	
Ccr.N,fi	Distancia crítica al borde:	R30 - R120	[mm]	2 x h _{ef}				
Cmin,fi	Distancia mínima al borde	R30 - R120	[mm]	c _{min} = 2 x h _{ef} ; si el ataque de fuego viene desde más de una cara, la distancia del anclaje al borde debe ser ≥ 300 mm				
Resiste	Resistencia a fuego a desconchamiento							
k ₈	Coeficiente desconchamiento	R30- R120	[mm]	1,87	1,66	1,05	1,71	1,39

Como norma, el fallo por fisuración del hormigón puede ser ignorado dado que se asume hormigón fisurado y presencia de armadura.

En ausencia de otras regulaciones nacionales se recomienda un coeficiente parcial de seguridad para resistencia bajo exposición a fuego $\gamma_{m,fi}=1,0$

Tornillo hormigón TXE	
Prestaciones	Anexo C27
Características esenciales bajo exposición a fuego	

ETE 20/0046 - versión 7 del 18/09/2025 - página 36 de 36

