| Tentative Specification | |----------------------------------| | Preliminary Specification | | Approval Specification | # MODEL NO.: G070ACE SUFFIX: LH3 | Customer: | | |------------------------------------------------------|--------------------------| | APPROVED BY | SIGNATURE | | Name / Title Note | | | Please return 1 copy for you signature and comments. | r confirmation with your | | Approved By | Checked By | Prepared By | |-------------|------------|-------------| | | | | | | | | | | | | | | | | | | | | ### **CONTENTS** | 1.1 OVERVIEW 5 1.2 FEATURE 5 1.3 APPLICATION 5 1.4 GENERAL SPECIFICATIONS 5 1.5 MECHANICAL SPECIFICATIONS 6 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4 BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERRACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 | 1. GENERAL DESCRIPTION | 5 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----| | 1.3 APPLICATION 5 1.4 GENERAL SPECIFICATIONS 5 1.5 MECHANICAL SPECIFICATIONS 6 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 6 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INIPUT SIGNAL TIMING SPECIFICATIONS 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 9.2 PACKING | 1.1 OVERVIEW | 5 | | 1.4 GENERAL SPECIFICATIONS 5 1.5 MECHANICAL SPECIFICATIONS 6 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 6 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 16 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 9.2 PACKING METHOD 26 9.2 PACKING METHOD | 1.2 FEATURE | 5 | | 1.5 MECHANICAL SPECIFICATIONS 6 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 6 2.2.2 BACKLIGHT UNIT 6 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9.2 PACKING METHOD 26 9.2 PACKING METHOD 26 9.2 PACKING METHOD 26 9.2 PACKING METHOD 26 10. DEFINITION OF LABELS 29 10. 1 INX MODULE LABEL< | 1.3 APPLICATION | 5 | | 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3.1 TFT LCD MODULE 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 10 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. 1 INX MODULE LABEL 29 10. 1 INX MODULE LABEL 29 | 1.4 GENERAL SPECIFICATIONS | 5 | | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 11. 1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.1 ASSEMBLY AND HAND | 1.5 MECHANICAL SPECIFICATIONS | 6 | | 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING METHOD 26 9.2 PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 10.1 PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31< | 2. ABSOLUTE MAXIMUM RATINGS | 7 | | 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 <td>2.1 ABSOLUTE RATINGS OF ENVIRONMENT</td> <td>7</td> | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | 7 | | 2.2.2 BACKLIGHT UNIT | 2.2 ELECTRICAL ABSOLUTE RATINGS | 8 | | 3. ELECTRICAL CHARACTERISTICS 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10. DEFINITION OF LABELS 29 11.1 PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 2.2.1 TFT LCD MODULE | 8 | | 3.1 TFT LCD MODULE | 2.2.2 BACKLIGHT UNIT | 8 | | 3.2 BACKLIGHT UNIT 10 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 25 9.1 PACKING SPECIFICATIONS 26 9.1 PACKING METHOD 26 9.3 UN-PACKING METHOD 26 9.3 UN-PACKING METHOD 26 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 3. ELECTRICAL CHARACTERISTICS | 9 | | 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 3.1 TFT LCD MODULE | 9 | | 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 3.2 BACKLIGHT UNIT | 10 | | 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 4. BLOCK DIAGRAM | 12 | | 5.1 TFT LCD MODULE 13 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 4.1 TFT LCD MODULE | 12 | | 5.2 COLOR DATA INPUT ASSIGNMENT 15 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 5. INPUT TERMINAL PIN ASSIGNMENT | 13 | | 6. INTERFACE TIMING 16 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 5.1 TFT LCD MODULE | 13 | | 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 16 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 5.2 COLOR DATA INPUT ASSIGNMENT | 15 | | 6.2 POWER ON/OFF SEQUENCE 18 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 6. INTERFACE TIMING | 16 | | 6.3 SCANNING DIRECTION 20 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 6.1 INPUT SIGNAL TIMING SPECIFICATIONS | 16 | | 7. OPTICAL CHARACTERISTICS 21 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 6.2 POWER ON/OFF SEQUENCE | 18 | | 7.1 TEST CONDITIONS 21 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 6.3 SCANNING DIRECTION | 20 | | 7.2 OPTICAL SPECIFICATIONS 21 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 7. OPTICAL CHARACTERISTICS | 21 | | 8. RELIABILITY TEST CRITERIA 25 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | | | | 9. PACKAGING 26 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 7.2 OPTICAL SPECIFICATIONS | 21 | | 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 8. RELIABILITY TEST CRITERIA | 25 | | 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 9. PACKAGING | 26 | | 9.3 UN-PACKING METHOD 28 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 9.1 PACKING SPECIFICATIONS | 26 | | 10. DEFINITION OF LABELS 29 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 9.2 PACKING METHOD | 26 | | 10.1 INX MODULE LABEL 29 11. PRECAUTIONS 30 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 30 11.2 STORAGE PRECAUTIONS 30 11.3 OTHER PRECAUTIONS 31 | 9.3 UN-PACKING METHOD | 28 | | 11. PRECAUTIONS3011.1 ASSEMBLY AND HANDLING PRECAUTIONS3011.2 STORAGE PRECAUTIONS3011.3 OTHER PRECAUTIONS31 | | | | 11.1 ASSEMBLY AND HANDLING PRECAUTIONS | 10.1 INX MODULE LABEL | 29 | | 11.2 STORAGE PRECAUTIONS30 11.3 OTHER PRECAUTIONS31 | | | | 11.3 OTHER PRECAUTIONS31 | 11.1 ASSEMBLY AND HANDLING PRECAUTIONS | 30 | | | 11.2 STORAGE PRECAUTIONS | 30 | | | | | | . MECHANICAL CHARACTERISTICS | 32 | |---------------------------------------|----| | Appendix . SYSTEM COVER DESIGN NOTICE | 33 | Version 0.0 30 March 2022 3 / 41 ### **REVISION HISTORY** | Version | Date | Page | Description | |---------|--------------|------|-------------------------------------------| | Ver 0.0 | 30 Mar, 2022 | All | Tentative Specification was first issued. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW G070ACE-LH3 is a 7" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 800xRGBx480 AAS mode and can display 262k or 16.7M colors. The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 7" WVGA LCD panel and the LED driving device for Backlight is built in PCBA. #### **1.2 FEATURE** - WVGA (800 x 480 pixels) resolution - DE (Data Enable) only mode - LVDS Interface with 1pixel/clock - PSWG (Panel Standardization Working Group) - Wide operating temperature. - RoHS compliance #### 1.3 APPLICATION - -TFT LCD Monitor - Factory Application - Amusement #### 1.4 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | |--------------------------|--------------------------------------|-------|------| | Active Area | 152.4 (H) x 91.44 (V) (7" diagonal) | mm | (1) | | Driver Element | a-Si TFT active matrix | - | - | | Pixel Number | 800 x R.G.B. x 480 | pixel | - | | Pixel Pitch | 0.1905 (H) x 0.1905 (V) | mm | - | | Pixel Arrangement | RGB vertical Stripe | - | - | | Display Colors | 16.7M / 262K | color | - | | Display Mode | Normally Black | - | - | | Surface Treatment | Hard Coating (3H), Anti-Glare | - | - | | Module Power Consumption | Total 3.15 W @ cell 0.45 W, BL 2.7 W | W | Тур. | ### 1.5 MECHANICAL SPECIFICATIONS | Item | | Min. | Тур. | Max. | Unit | Note | |-------------|----------------|-------|--------|-------|------|------| | | Horizontal (H) | 164.5 | 165 | 165.5 | mm | | | Module Size | Vertical (V) | 103.5 | 104 | 104.5 | mm | (1) | | | Thickness (T) | 8.13 | 8.63 | 9.13 | mm | | | Bezel Area | Horizontal | 154.3 | 154.60 | 154.9 | mm | | | bezei Alea | Vertical | 93.34 | 93.64 | 93.94 | mm | | | Active Area | Horizontal | - | 152.4 | - | mm | | | Active Area | Vertical | - | 91.44 | - | mm | | | Weight | | | (152) | | g | | Note (1)Please refer to the attached drawings for more information of front and back outline dimensions. #### 2. ABSOLUTE MAXIMUM RATINGS #### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | Item | Symbol | Va | Unit | Note | | |-------------------------------|----------|------|------|------------------------|--------| | iteiii | Syllibol | Min. | Max. | Offic | Note | | Storage Temperature | Tst | -40 | (85) | $^{\circ}\!\mathbb{C}$ | (4)(2) | | Operating Ambient Temperature | Тор | -30 | (85) | $^{\circ}\!\mathbb{C}$ | (1)(2) | #### Note (1) - (a) 90 %RH Max. - (b) Wet-bulb temperature should be 39 °C Max. - (c) No condensation. Note (2) Panel surface temperature should be $0^{\circ}\mathbb{C}$ min. and $65^{\circ}\mathbb{C}$ max under Vcc=5.0V, fr =60Hz, typical LED string current, $25^{\circ}\mathbb{C}$ ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than $65^{\circ}\mathbb{C}$. #### Relative Humidity (%RH) #### 2.2 ELECTRICAL ABSOLUTE RATINGS #### 2.2.1 TFT LCD MODULE | Item | Symbol | Val | ue | Unit Note | Noto | | |----------------------|-----------------|------|------|-----------|------|--| | item | Syllibol | Min. | Max. | Offic | Note | | | Power Supply Voltage | Vcc | -0.3 | 3.6 | V | (1) | | | Logic Input Voltage | V _{IN} | -0.3 | 3.6 | V | (1) | | #### 2.2.2 BACKLIGHT UNIT | Itom | Symbol | Va | lue | Unit | Note | | |-------------------|---------|------|------|-------|----------|--| | Item | Symbol | Min. | Max. | Ullit | Note | | | Converter Voltage | Vi | 0 | 18.0 | V | (1), (2) | | | Enable Voltage | EN | | 7 | V | | | | Backlight Adjust | Dimming | | 7 | V | | | Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for LED (Refer to 3.2 for further information). #### 3. ELECTRICAL CHARACTERISTICS #### 3.1 TFT LCD MODULE | Doromotor | Parameter | | | Value | | | Note | |--------------------------------|------------|-------------------|------|-------|------|-------|------| | Faidifielei | Symbol | Min. | Тур. | Max. | Unit | Note | | | Power Supply Vo | ltage | Vcc | 3.0 | 3.3 | 3.6 | V | - | | Ripple Voltage | е | V_{RP} | - | - | 100 | mVp-p | - | | Rush Current | t | I _{RUSH} | - | - | 2 | Α | (2) | | Dower Supply Current | White | lcc | - | 135 | 200 | mA | (3)a | | Power Supply Current | Black | ICC | - | 85 | 135 | mA | (3)b | | LVDS differential inpu | it voltage | Vid | 200 | - | 600 | mV | | | LVDS common input | voltage | Vic | 1.0 | 1.2 | 1.4 | V | | | Differential Input Voltage for | "H" Level | V_{TH} | - | - | +100 | mV | - | | LVDS Receiver Threshold | "L" Level | V_{TL} | -100 | - | - | mV | - | | Logic Input Voltage | "H" Level | V_{IH} | 2.6 | - | Vcc | ٧ | | | Logic Input Voltage | "L" Level | V _{IL} | 0 | - | 0.7 | V | | | Terminating Resi | stor | R _T | - | 100 | - | Ohm | - | Note (1)The module should be always operated within above ranges. Note (2)Measurement Conditions: Note (3) The specified power supply current is under the conditions at V_{CC} =3.3V, Ta = 25 \pm 2 $^{\circ}$ C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed. b. Black Pattern Active Area #### 3.2 BACKLIGHT UNIT | Paramo | Symbol | | Value | | Unit | Note | | |----------------------|----------------|------------------|--------|------|-------|----------------------------------------|--------------------------------------------| | i arann | Symbol | Min. | Тур. | Max. | Offic | NOLE | | | Converter Power S | Supply Voltage | LED_Vin | 10.8 | 12.0 | 13.2 | V | | | Converter Input F | Ripple Voltage | V_{iRP} | - | - | 500 | mV | | | Converter Power S | Supply Current | li | 0.18 | 0.22 | 0.3 | Α | @LED_Vin= 12V
Duty=100% | | Converter Input I | Rush Current | lirsh | | | 3 | Α | @LED_Vin rising =
1mS(Vi=12V) | | Input Power Co | onsumption | Pi | - | 2.7 | 3.3 | W | (1) | | EN Control Level | Backlight on | ENLED | 2.0 | 3.3 | 5.0 | V | EN Control Level | | EN Control Level | Backlight off | (BLON) | 0 | - | 0.3 | V | | | PWM Control Level | PWM High Level | Dimming | 2.0 | | 5.0 | V | PWM Control Level | | PVVIVI CONITOI Level | PWM Low Level | (E_PWM) | 0 | | 0.15 | V | | | PWN Noise | Range | VNoise | i | - | 0.1 | V | | | PWM Control | Frequency | f_{PWM} | 190 | 200 | 20K | Hz | (3) | | DIAMA Dimming Co | | | | - | 100 | % | (3), @
190Hz <f<sub>PWM<1kHz</f<sub> | | PWM Dimming Co | - | 20 | - | 100 | % | (3), @
1kHz≦f _{PWM} <20kHz | | | LED Life | Time | L _{LED} | 50,000 | | - | Hrs | (2) | Note (1)LED current is measured by utilizing a high frequency current meter as shown below: - Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and Duty 100% until the brightness becomes ≤ 50% of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift. - Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%. 1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a **suggestion** that PWM control frequency should be **less than 1KHz**. #### 4. BLOCK DIAGRAM #### **4.1 TFT LCD MODULE** #### 5. INPUT TERMINAL PIN ASSIGNMENT #### **5.1 TFT LCD MODULE** | Pin No. | Symbol | Function | Polarity | Note | |---------|---------|---|----------|------| | 1 | 12V | LED power | | - | | 2 | 12V | LED power | | - | | 3 | 12V | LED power | | - | | 4 | 12V | LED power | | - | | 5 | ENLED | Enable pin | | = | | 6 | Dimming | Backlight Adjust | | - | | 7 | NC | No Conncetion (Reserve for INX test) | | (4) | | 8 | NC | No Conncetion (Reserve for INX test) | | (4) | | 9 | VCC | Power supply: +3.3V | | - | | 10 | VCC | Power supply: +3.3V | | - | | 11 | GND | Ground | | - | | 12 | GND | Ground | | - | | 13 | RX0- | Negative transmission data of pixel 0 | Negative | - | | 14 | RX0+ | Positive transmission data of pixel 0 | Positive | - | | 15 | GND | Ground | | - | | 16 | RX1- | Negative transmission data of pixel 1 | Negative | - | | 17 | RX1+ | Positive transmission data of pixel 1 | Positive | - | | 18 | GND | Ground | | - | | 19 | RX2- | Negative transmission data of pixel 2 | Negative | - | | 20 | RX2+ | Positive transmission data of pixel 2 | Positive | - | | 21 | GND | Ground | | - | | 22 | RXCLK- | Negative of clock | Negative | - | | 23 | RXCLK+ | Positive of clock | Positive | - | | 24 | GND | Ground | | = | | 25 | RX3- | Negative transmission data of pixel 3 | Negative | = | | 26 | RX3+ | Positive transmission data of pixel 3 | Positive | - | | _ | | Gate Driver Up/Down scan control. | | | | 27 | UD | When UD=H, reverse scan | | (3) | | | | When UD=L, normal scan | | | | 00 | 051.0/0 | LVDS 6/8 bit select function control, | | (0) | | 28 | SEL6/8 | Low → 6 bit Input Mode | | (3) | | | | High or NC → 8bit Input Mode | | | | 29 | LR | Source Driver Right/ Left scan control. When LR=H, normal scan | | (3) | | 29 | LIX | When LR=L, reverse scan | | (3) | | 30 | GND | Ground | | | | 30 | GND | Ground | | | Note (1) Connector Part No.: Starconn 093G30-B0001A-G4.or P-TWO 187114-30091 Note (2) User's connector Part No: Mating Wire Cable Connector Part No. :FI-X30H (JAE) or FI-X30HL (JAE) Note (3) "Low" stands for 0V. "High" stands for 3.3V Note (4) Pin7, Pin8 input signals should be set to no connection or ground, this module #### **5.2 COLOR DATA INPUT ASSIGNMENT** The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input. | | | | | | | | | | | ı | | D | ata | _ | nal | | | | | | | | | | | |--------|---|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----| | | Color | | | | R | | | | | | | | | een | | | | | | | | ue | | | | | | T | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | B7 | B6 | B5 | B4 | ВЗ | B2 | B1 | B0 | | | Black | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Red(0) / Dark | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | | Of | : | | Red | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | INCU | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | | Of | : | | Green | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | GICCII | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0) / Dark | 0 | | | Blue(1) | 0 | 1 | | Gray | Blue(2) | 0 | 1 | 0 | | Scale | : | | Of | : | : | | Blue | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1)0: Low Level Voltage, 1: High Level Voltage #### 6. INTERFACE TIMING #### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS** The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | | |----------------------------|--------------------------------------|------------------------|----------|-------|---------------------|----------------|-------------------------|--| | | Frequency | Fc | 25.2 | 25.4 | 35.7 | MHz | - | | | | Period | Tc | | 39.37 | | ns | | | | | Input cycle to cycle jitter | T _{rcl} | -0.02*Tc | ı | 0.02*Tc | ns | (a) | | | LVDS Clock | Input Clock to data skew | TLVCCS | -0.02*Tc | - | 0.02*Tc | ps | (b) | | | | Spread spectrum modulation range | F _{clkin_mod} | - | ı | 1.02*F _c | MHz | (c) | | | | Spread spectrum modulation frequency | F _{SSM} | 23 | - | 93 | KHz | (c) | | | | Frame Rate | Fr | - | 60 | - | Hz | - | | | Vertical Display | Total | T_v | 488 | 490 | 611 | T_h | $Tv=T_{vd}+T_{vb}$ | | | Term | Active Display | T_{vd} | 480 | 480 | 480 | T_h | - | | | | Blank | T_{vb} | 8 | 10 | 131 | T_h | - | | | Harimantal Diamlar | Total | T _h | 860 | 864 | 974 | T _c | $T_h = T_{hd} + T_{hb}$ | | | Horizontal Display
Term | Active Display | T_{hd} | 800 | 800 | 800 | T _c | - | | | 101111 | Blank | T_{hb} | 60 | 64 | 174 | T _c | - | | Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally. Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally. #### **INPUT SIGNAL TIMING DIAGRAM** #### **TIMING DIAGRAM of LVDS** Note (a) The input clock cycle-to-cycle jitter is defined as below figures. $T_{rcl} = I T1 - TI$ Note (b) Input Clock to data skew is defined as below figures. Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures. #### **6.2 POWER ON/OFF SEQUENCE** To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below. | Doromotor | | Units | | | | | |-----------|-----|-------------|-----|----|--|--| | Parameter | Min | Min Typ Max | | | | | | T1 | 0.5 | 1 | 10 | ms | | | | T2 | 0 | - | 50 | ms | | | | Т3 | 0 | - | 50 | ms | | | | T4 | 500 | - | - | ms | | | | T5 | 450 | - | - | ms | | | | T6 | 200 | 1 | - | ms | | | | T7 | 10 | - | 100 | ms | | | Version 0.0 30 March 2022 18 / 41 | , , , , , , , , , , , , , , , , , , , | | | | | |---|----|---|----|----| | Т8 | 10 | - | - | ms | | Т9 | 10 | - | - | ms | | T10 | 20 | - | 50 | ms | #### Note - (1)The supply voltage of the external system for the module input should be the same as the definition of Vcc. - (2)When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen. - (3)In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance. - (4)T4 should be measured after the module has been fully discharged between power off and on period. - (5)Interface signal shall not be kept at high impedance when the power is on. - (6)INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence. There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec". #### **6.3 SCANNING DIRECTION** The following figures show the image see from the front view. The arrow indicates the direction of scan. Fig.1 Normal Scan Fig.2 Reverse Scan PCBA on the bottom side PCBA on the bottom side - Fig. 1 Normal scan (pin 27, UD = Low, pin 29 LR = High) - Fig. 2 Reverse scan (pin 27, UD = High, pin 29 LR = Low) 7. OPTICAL CHARACTERISTICS #### 7.1 TEST CONDITIONS | Item | Symbol | Value | Unit | |---------------------|----------|------------------------------|-----------| | Ambient Temperature | Та | 25±2 | оС | | Ambient Humidity | На | 50±10 | %RH | | Supply Voltage | Accordin | ng to typical value and tole | erance in | | Input Signal | "ELE | CTRICAL CHARACTERIS | STICS" | | PWM Duty Ratio | D | 100 | % | #### 7.2 OPTICAL SPECIFICATIONS The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5). | Iter | n | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | |---------------|-----------------|--------|-------------------|-------|---------|-------|-------------------|----------| | | Red | Rx | | | (0.58) | | | | | | Red | Ry | | | (0.330) | | | | | | Green | Gx | | | (0.334) | | | | | Color | Green | Gy | | Тур – | (0.600) | Typ + | | (1) (5) | | Chromaticity | Blue | Bx | θX=0°, θY =0° | 0.05 | (0.150) | 0.05 | - | (1), (5) | | | blue | Ву | Grayscale Maximum | | (0.054) | | | | | |) | Wx | | | 0.313 | | | | | | White | Wy | | | 0.329 | | | | | Center Lumina | nce of White | LC | | 400 | 500 | | cd/m ² | (4), (5) | | Contrast | Ratio | CR | | 600 | 800 | | | (2), (5) | | Pospopo | o Timo | TR | 0V-0° 0V -0° | - | 13 | - | mo | (2) | | Respons | e nine | TF | θX=0°, θY =0° | ı | 12 | - | ms | (3) | | White Va | White Variation | | θX=0°, θY =0° | 70 | - | - | % | (5), (6) | | | Horizontal | θX+ | | 80 | 89 | - | | | | Viouing Anglo | Horizoniai | θX- | CR≧10 | 80 | 89 | - | Dog | (1) (E) | | Viewing Angle | Vertical | θΥ+ | UN≦ IU | 80 | 89 | - | Deg. | (1), (5) | | | vertical | θY- | | 80 | 89 | - | | | #### Definition: Grayscale Maximum: Grayscale 255 (10 bits: grayscale 1023; 8 bits: grayscale 255; 6 bits: grayscale 63) White: Luminance of Grayscale Maximum (All R,G,B) Black: Luminance of grayscale 0 (All R,G,B) Note (1)Definition of Viewing Angle (θx , θy): Note (2)Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression at center point. Contrast Ratio (CR) = White / Black Note (3)Definition of Response Time (T_R, T_F) : #### Note (4) Definition of Luminance of White (L_C) : Measure the luminance of White at center point. #### Note (5) Measurement Setup: The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing. #### Note (6) Definition of White Variation (δW): Measure the luminance of White at 5 points. Luminance of White : L(X), where X is from 1 to 5. $$\delta W = \frac{Minimum [L(1) to L(5)]}{Maximum [L(1) to L(5)]} \times 100\%$$ #### 8. RELIABILITY TEST CRITERIA | Test Item | Test Condition | Note | |---|---|----------| | High Temperature Storage Test | (85°C, 240 hours) | | | Low Temperature Storage Test | -40°C, 240 hours | | | Thermal Shock Storage Test | -30°C, 0.5hour ←→80°C, 0.5hour; 1hour/cycle,100cycles | (1),(2) | | High Temperature Operation Test | (85°C, 240 hours) | (4),(5) | | Low Temperature Operation Test | -30°C, 240 hours | () () | | High Temperature & High Humidity Operation Test | 60℃, RH 90%, 240 hours | | | Shock (Non-Operating) | 50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z | (2), (3) | | Vibration (Non-Operating) | 1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z | | - Note (1)There should be no condensation on the surface of panel during test, - Note (2) Temperature of panel display surface area should be 85°C Max. - Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. - Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test. - Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature. #### 9. PACKAGING #### 9.1 PACKING SPECIFICATIONS - (1) 34 pcs LCD modules / 1 Box - (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm - (3) Weight: approximately TBD Kg (34modules per box) #### 9.2 PACKING METHOD Figure. 9-1 Packing method Figure. 9-2 Packing method ### 9.3 UN-PACKING METHOD Figure. 9-3 UN-Packing method #### 10. DEFINITION OF LABELS #### **10.1 INX MODULE LABEL** The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. Note (1) Safety Compliance(UL logo) will open after C1 version. (a)Model Name: G070ACE-LH3 (b)* * * * : Factory ID Serial ID includes the information as below: (a) Manufactured Date: Year: 1~9, for 2021~2029 Month: 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U (b) Revision Code: cover all the change (c) Serial No.: Manufacturing sequence of product # INNOLUX 群創光電 ### PRODUCT SPECIFICATION #### 11. PRECAUTIONS #### 11.1 ASSEMBLY AND HANDLING PRECAUTIONS - (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module. - (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer. - (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process. - (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched. - (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction. - (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time. - (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap. - (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC. - (9) Do not disassemble the module. - (10) Do not pull or fold the lamp wire. - (11) Pins of I/F connector should not be touched directly with bare hands. #### 11.2 STORAGE PRECAUTIONS - (1)When storing for a long time, the following precautions are necessary. - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH. - (b) The polarizer surface should not come in contact with any other object. - (c) It is recommended that they be stored in the container in which they were shipped. - (d) Storage condition is guaranteed under packing conditions. - (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition - (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions. - (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating. - (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature. #### 11.3 OTHER PRECAUTIONS - (1) Normal operating condition - (a) Display pattern: dynamic pattern (Real display)(Note) Long-term static display can cause image sticking. - (2) Operating usages to protect against image sticking due to long-term static display - (a) Suitable operating time: under 16 hours a day. - (b) Static information display recommended to use with moving image. - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image. - (3) Abnormal condition just means conditions except normal condition. #### . MECHANICAL CHARACTERISTICS #### **Appendix . SYSTEM COVER DESIGN NOTICE** Version 0.0 30 March 2022 34 / 41 Version 0.0 30 March 2022 36 / 41 Version 0.0 30 March 2022 38 / 41 | 10 | Design distance between TP AA to LCD AA | |----|---| | | = | Version 0.0 30 March 2022 39 / 41 | 11 | Use OCR Lamination | |----|--------------------|