- ☐ Tentative Specification - □ Preliminary Specification - Approval Specification # MODEL NO.: S400DJ1 SUFFIX: KS5 | Revision : V6
Customer : | | |--------------------------------------|---------------------------------| | APPROVED BY | SIGNATURE | | Name / Title Note | | | Please return 1 copy for your confin | rmation with your signature and | | Approved By | Checked By | Prepared By | |--------------|------------|-------------| | ChihFan Ting | John Hsieh | Shoi Wu | Version 2.3 Date: Jun.16, 2023 #### **CONTENTS** | TFT LCD MODULE: table | 4 | |--|----| | Timing spec for QFHD Mode :TABLE | 4 | | POWER ON/OFF SEQUENCE : note. | 4 | | 1. GENERAL DESCRIPTION | 5 | | 1.1 OVERVIEW | 5 | | 1.3 GENERAL SPECIFICATIONS | 5 | | 1.4 MECHANICAL SPECIFICATIONS | 6 | | 2. ABSOLUTE MAXIMUM RATINGS | 7 | | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | 7 | | 2.2 PACKAGE STORAGE | 8 | | 2.3 ELECTRICAL ABSOLUTE RATINGS | 8 | | 2.3.1 TFT LCD MODULE | 8 | | 3. ELECTRICAL CHARACTERISTICS | 9 | | 3.1 TFT LCD MODULE | 9 | | 3.2 BACKLIGHT UNIT | 11 | | 3.2.1 LED LIGHT BAR CHARACTERISTICS | 11 | | 4. INPUT TERMINAL PIN ASSIGNMENT | 12 | | 4.1 TFT LCD MODULE VbyOne HS INPUT | 12 | | 4.2 BACKLIGHT UNIT | 15 | | 4.3 COLOR DATA INPUT ASSIGNMENT | 16 | | 5. INTERFACE TIMING | 17 | | 5.1 INPUT SIGNAL TIMING SPECIFICATIONS | 17 | | 5.1.1 Timing spec for QFHD Mode Frame Rate =45~ 63Hz | 17 | | 5.2 TIMING DRAGRAM | 20 | | 5.2.1 V by One Input Signal Timing Diagram | 20 | | 5.3 Byte Length and Color mapping of V-by-One HS | 21 | | 5.4 POWER ON/OFF SEQUENCE | 22 | | 5.5 I2C timing SPEC | 23 | | 6. OPTICAL CHARACTERISTICS | 24 | | 6.1 TEST CONDITIONS | 24 | | 6.2 OPTICAL SPECIFICATIONS | 25 | | 7. PRECAUTIONS | 28 | |---------------------------------------|----| | 7.1 ASSEMBLY AND HANDLING PRECAUTIONS | | | 7.2 SAFETY PRECAUTIONS | 29 | | 7.3 SAFETY STANDARDS | 30 | | 8. DEFINITION OF LABELS | | | 8.1 MODULE LABEL | 31 | | 8.2 CARTON LABEL | 32 | | 9. PACKAGING | | | 9.1 PACKAGING SPECIFICATIONS | | | 9.2 PACKAGING METHOD | | | 9.3 UN-PACKAGING METHOD | 35 | | 10. MECHANICAL CHARACTERISTIC | 36 | #### **REVISION HISTORY** | Var:: | Dete | | | Description | |-----------|--------------|--|---------|--| | Version | Date | Page(New) | Section | Description | | Ver. 2.0 | Jul.12,2019 | All | All | Approval Specification was first issued. | | Ver. 2.1 | May.29,2023 | P.1 | Ver. | V4→V6 | | | | P.5 | 1.1 | OVERVIEW | | | | | 1.3 | GENERAL SPECIFICATIONS :Note(1) | | | | P.8 | 2.3.1 | ELECTRICAL ABSOLUTE RATINGS - TFT LCD | | | | | | MODULE : note(1) | | | | P.9~10 | 3.1 | ELECTRICAL CHARACTERISTICS – TFT LCD | | | | | | MODULE: V-BY-ONE, note(1), Note(3) | | | | P.15~17 | 4.1 | INPUT TERMINAL PIN ASSIGNMENT -TFT LCD | | | | | | MODULE VbyOne HS INPUT table¬e(1)(2)(5)(6)(7) | | | | P.21~27 | 5 | INTERFACE TIMING | | | | | | | | Ver. 2.2 | Jun.15, 2023 | P.9 | 3.1 | TFT LCD MODULE: table | | V C1. 2.2 | Jun.10, 2020 | P.17 | 5.1.1 | Timing spec for QFHD Mode :TABLE | | | | P.22 | 5.1.1 | POWER ON/OFF SEQUENCE : note. | | | | Γ.22 | 3.4 | TOWER ON/OFF SEQUENCE . Hote. | | Ver. 2.3 | Jun.16, 2023 | P.5 | 1 1 | OMEDMEM | | ver. 2.3 | Jun.16, 2023 | | 1.1 | OVERVIEW | | | | p.22 | 5.4 | POWER ON/OFF SEQUENCE: note. | | | | P.23 | 5.5 | I2C timing SPEC | 1 | <u> </u> | 1 | | #### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW S400DJ1-KS5 is a 40" TFT Liquid Crystal Display TV module with LED Backlight unit and 8Lanes V-by-One HS interface. This module supports 3840 x 2160 Quad Full HDTV format and can display true 1.07G colors (8-bit+FRC). #### 1.2 FEATURES High brightness: 550 nitsHigh contrast ratio: 5000:1 Fast response time : Gray to Gray typical : 9.5 ms High color saturation : NTSC 88% Quad Full HDTV (3840 x 2160 pixels) resolution, true HDTV format V-by-One HS interface Optimized response time for 50Hz/60Hz frame rate - Viewing Angle: 178(H)/178(V) (CR>10) VA Technology Ultra wide viewing angle: Super MVA technology RoHs compliance T-con input frame rate: QFHD 45~63Hz Output frame rate: QFHD 45~63Hz #### 1.3 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | |------------------------|---|-------|------| | Active Area | 878.112(H) x 485.352(V) (40" diagonal) | mm | (1) | | Bezel Opening Area | 881.112(H) x 488.352(V) | mm | (1) | | Driver Element | a-si TFT active matrix | - | - | | Pixel Number | 3840 x R.G.B. x 2160 | pixel | - | | Pixel Pitch(Sub Pixel) | 0.076225 (H) x 0.2247 (V) | mm | - | | Pixel Arrangement | RGB vertical stripe | - | - | | Display Colors | 1.07G colors (8-bit+FRC) | color | - | | Display Operation Mode | Transmissive mode / Normally black | - | - | | Surface Treatment | Anti-Glare coating (Haze ~1%),Hardness 3H | - | (2) | | Rotation Function | Unachievable | | (3) | | Display Orientation | Signal input with "INX" | | (3) | Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines. Note (2) The spec. of the surface treatment is temporarily for this phase. INX reserves the rights to change this feature. Note (3) | Back Side | Front Side | |-------------|------------| | | INX | | T-con Board | | #### 1.4 MECHANICAL SPECIFICATIONS | Item | | Min. | Тур. | Max. | Unit | Note | |-------------|----------------|--------|--------|--------|------|----------| | | Horizontal (H) | 892.11 | 893.11 | 894.11 | mm | | | Madula Ciga | Vertical (V) | 503.35 | 504.35 | 505.35 | mm | (1), (2) | | Module Size | Davida (D) | 10.5 | 11.5 | 12.5 | mm | | | Depth (D) | | 24.2 | 25.2 | 26.2 | | (3) | | Weight | | | 7680 | | g | _ | Note (1) Please refer to the attached drawings for more information of front and back outline dimensions. Note (2) Module Depth is between bezel to rear Note (3) Module Depth is between bezel to Converter cover #### 2. ABSOLUTE MAXIMUM RATINGS #### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | Item | Cross b a l | Va | lue | Tlait | Note | | |-------------------------------|-------------|------|------|-------|----------|--| | nem | Symbol | Min. | Max. | Unit | | | | Storage Temperature | TST | -20 | +60 | °C | (1) | | | Operating Ambient Temperature | TOP | 0 | 50 | °C | (1), (2) | | | Shock (Non-Operating) | SNOP | - | 50 | G | (3), (5) | | | Vibration (Non-Operating) | VNOP | - | 1.0 | G | (4), (5) | | Note (1) Temperature and relative humidity range is shown in the figure below. - (a) 90 %RH Max. ($Ta \le 40 \, ^{\circ}\text{C}$) - (b) Wet-bulb temperature should be 39 °C Max. - (c) No condensation. - Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design. - Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$. - Note (4) $10 \sim 200$ Hz, 30 min, 1 time each X, Y, Z. - Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. #### 2.2 PACKAGE STORAGE When storing modules as spares for a long time, the following precaution is necessary. - (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation. - (b) The module shall be stroed in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light. #### 2.3 ELECTRICAL ABSOLUTE RATINGS #### 2.3.1 TFT LCD MODULE | Itom | Crombal | Value | | Unit | Note | | |----------------------|---------|-------|------|------|------|--| | Item | Symbol | Min. | Max. | Unit | Note | | | Power Supply Voltage | VCC | -0.3 | 13.5 | V | (1) | | | Logic Input Voltage | VIN | -0.3 | 3.6 | V | (1) | | Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. #### 3. ELECTRICAL CHARACTERISTICS #### 3.1 TFT LCD MODULE $$(Ta = 25 \pm 2 \, {}^{\circ}C)$$ | Parameter | | Symbol | Value | | | T I.a.: | Note | |--|--|-------------------|-------|-------|-------|---------|------| | rara | ameter | Symbol | Min. | Тур. | Max. | Unit | Note | | Power Supply Voltage | | V _{CC} | 10.8 | 12 | 13.2 | V | (1) | | Rush Current | | I_{RUSH} | _ | _ | 2.96 | A | (2) | | | White Pattern | P_T | _ | 9.46 | 10.4 | W | | | QFHD 60Hz Output
Power Consumption | Horizontal Stripe | P_T | _ | 14.68 | 16.15 | W | | | | Black Pattern | P_T | _ | 7.94 | 8.73 | W | (2) | | | White Pattern | _ | _ | 0.81 | 0.98 | A | (3) | | QFHD 60Hz Output
Power Supply Current | Horizontal Stripe | _ | _ | 1.27 | 1.52 | A | | | | Black Pattern | _ | _ | 0.67 | 0.8 | A | | | | Differential Input High
Threshold Voltage | VLVTH | _ | _ | +50 | mV | | | V-by-One HS | Differential Input Low
Threshold Voltage | VLVTL | -50 | _ | _ | mV | | | | Differential Input
Resistor | RRIN | 80 | 100 | 120 | ohm | | | CMOC intenfere | Input High Threshold
Voltage | V_{IH} | 2.7 | _ | 3.6 | V | | | CMOS interface | Input Low Threshold
Voltage | $V_{\rm IL}$ | 0 | _ | 0.7 | V | | Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10% of Vcc (Typ.). #### Note (2) Measurement condition: Note (3) The specified power supply current is under the conditions at Vcc = 12 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, fv = 60 Hz, whereas a power dissipation check pattern below is displayed. #### 3.2 BACKLIGHT UNIT #### 3.2.1 LED LIGHT BAR CHARACTERISTICS The backlight unit contains 2 pcs LED light bar, and each light bar has 4 string LED. (Ta = 25 ± 2 °C) | Dawanastan | Carrella a l | | Value | Unit | NT. (. | | |------------------------------|--------------|--------|-------|-------|-----------------|------------------------------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | | One String Current | I_{L} | 171 | 180 | 189 | mA | (1) | | One String Voltage | Vw | 34.83 | - | 41.92 | V _{DC} | (2)
I _L =180mA | | One String Voltage Variation | △Vw | | | 2 | V _{DC} | | | Power Consumption | P_{BL} | | 54.64 | | W | (3)
I _L =180mA | | Life time | _ | 30,000 | _ | _ | Hrs | (4) | Note (1) Dimming Ratio=100% Note (4) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = 25±2 $^{\circ}$ C , IL =180 mA Note (2) The maximum one string voltage is defined at Ta= -25 $^{\circ}$ C Notw(3) The power consumption is only calculate the power of Light bar. #### 4. INPUT TERMINAL PIN ASSIGNMENT #### 4.1 TFT LCD MODULE VbyOne HS INPUT CNC03 Connector Pin Assignment: [187059-51221(P-TWO), WF23-402-5133(FCN)] Matting Connector: [FI-RE51HL (JAE)] | Pin | Name | Description | Note | |-----|-------|---|------------| | 1 | Vin | Power input (+12V) | | | 2 | Vin | Power input (+12V) | | | 3 | Vin | Power input (+12V) | | | 4 | Vin | Power input (+12V) | (E) | | 5 | Vin | Power input (+12V) | (5) | | 6 | Vin | Power input (+12V) | | | 7 | Vin | Power input (+12V) | | | 8 | Vin | Power input (+12V) | | | 9 | N.C. | No Connection | (4) | | 10 | GND | Ground | | | 11 | GND | Ground | | | 12 | GND | Ground | | | 13 | GND | Ground | | | 14 | GND | Ground | | | 15 | N.C. | No Connection | (4) | | 16 | N.C. | No Connection | (4) | | 17 | N.C. | No Connection | (4) | | 18 | SDA | I2C Data signal ,(open drain) | (7) | | 19 | SCL | I2C Clock signal,(open drain) | (7) | | 20 | N.C. | No Connection | (4) | | 21 | Vsync | Vsync (for Converter) | | | 22 | N.C. | No Connection | (4) | | 23 | N.C. | No Connection | (4) | | 24 | N.C. | No Connection | (4) | | 25 | HTPDN | No Connection or ground | (6) | | 26 | LOCKN | Lock detect output, Open drain. | | | 27 | GND | Ground | | | 28 | RX0N | 1 ST Pixel Negative V-by-One differential data input in area A. Lane 0 | (1) | | 29 | RX0P | 1ST Pixel Positive V-by-One differential data input in area A. Lane 0 | (1) | | 30 | GND | Ground | | | 31 | RX1N | 2 ND Pixel Negative V-by-One differential data input in area A. Lane 1 | (1) | | 32 | RX1P | 2ND Pixel Positive V-by-One differential data input in area A. Lane 1 | (1) | | 33 | GND | Ground | | | 34 | RX2N | 3 RD Pixel Negative V-by-One differential data input in area A. Lane 2 | (1) | | 35 | RX2P | 3 RD Pixel Positive V-by-One differential data input in area A. Lane 2 | | | 36 | GND | Ground | | | 37 | RX3N | 4 TH Pixel Negative V-by-One differential data input in area A. Lane 3 | (1) | | 38 | RX3P | 4 TH Pixel Positive V-by-One differential data input in area A. Lane 3 | | | 39 | GND | Ground | | | 40 | RX4N | 5 TH Pixel Negative V-by-One differential data input in area A. Lane 4 | (1) | | 41 | RX4P | 5 TH Pixel Positive V-by-One differential data input in area A. Lane 4 | | | 42 | GND | Ground | | | 43 | RX5N | 6 TH Pixel Negative V-by-One differential data input in area A. Lane 5 | (1) | | 44 | RX5P | 6 TH Pixel Positive V-by-One differential data input in area A. Lane 5 | | | 45 | GND | Ground | | | 46 | RX6N | 7 TH Pixel Negative V-by-One differential data input in area A. Lane 6 | (1) | |----|------|---|-----| | 47 | RX6P | 7 TH Pixel Positive V-by-One differential data input in area A. Lane 6 | | | 48 | GND | Ground | | | 49 | RX7N | 8 TH Pixel Negative V-by-One differential data input in area A. Lane 7 | (1) | | 50 | RX7P | 8 TH Pixel Positive V-by-One differential data input in area A. Lane 7 | | | 51 | GND | Ground | | #### Note (1) V-by-One HS Data Mapping(QFHD mode) | Area | Lane | Data Stream | |------|--------|------------------------| | | Lane 0 | 1, 9, 17,, 3825, 3833 | | | Lane 1 | 2, 10, 18,, 3826, 3834 | | | Lane 2 | 3, 11, 19,, 3827, 3835 | | ۸ | Lane 3 | 4, 12, 20,, 3828, 3836 | | A | Lane 4 | 5, 13, 21,,3829, 3837 | | | Lane 5 | 6, 14, 22,, 3830, 3838 | | | Lane 6 | 7, 15, 23,, 3831, 3839 | | | Lane7 | 8, 16, 24,, 3832, 3840 | #### Front View #### Display Note (2) V-by-One HS connector pin order defined as follows Note (3) V-by-One connector mating dimension range request is 0.93mm~1.0mm as below Note (4) Reserved for internal use. Please leave it open. Note (5) Power input (+12V), Please check the current rating of FFC cable to meet the power consumption requirement. Note (6) This pin connect to ground internal, but it could be open. Note (7) I2C pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below. #### **4.2 BACKLIGHT UNIT** #### 4.2.1 LIGHT BAR UNIT The pin configuration for the housing and lead wire is shown in the table below. CNL01 Connector Pin Assignment: [WM13-412-123N(FCN) or CI1412M1HRM-NH (CVILUX)] Matting connector: [IWF13-00112(FCN) or CI1412SL000-NH(CVILUX)] | 1 | VLED | Positive of LED String | | |----|------|------------------------|--| | 2 | VLED | Positive of LED String | | | 3 | VLED | Positive of LED String | | | 4 | NC | No Connection | | | 5 | NC | No Connection | | | 6 | NC | No Connection | | | 7 | NC | No Connection | | | 8 | NC | No Connection | | | 9 | N1 | Negative of LED String | | | 10 | N2 | Negative of LED String | | | 11 | N3 | Negative of LED String | | | 12 | N4 | Negative of LED String | | CNL01 Connector Pin Assignment: [WM13-412-123N(FCN) or CI1412M1HRM-NH (CVILUX)] Matting connector: [IWF13-00112(FCN) or CI1412SL000-NH(CVILUX)] | 1 | VLED | Positive of LED String | | |----|------|------------------------|--| | 2 | VLED | Positive of LED String | | | 3 | VLED | Positive of LED String | | | 4 | NC | No Connection | | | 5 | NC | No Connection | | | 6 | NC | No Connection | | | 7 | NC | No Connection | | | 8 | NC | No Connection | | | 9 | N1 | Negative of LED String | | | 10 | N2 | Negative of LED String | | | 11 | N3 | Negative of LED String | | | 12 | N4 | Negative of LED String | | Note (1) Lightbar Input connector pin order defined as follows #### 4.3 COLOR DATA INPUT ASSIGNMENT The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input. | , | | | Data Signal |---------------|------------------|----|-------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | Color | | | | | Re | ed | | | | | | | | | Gre | een | | | | | | | | | Bl | ue | | | | | | | | R9 | R8 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G9 | G8 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В9 | B8 | В7 | B6 | В5 | B4 | В3 | B2 | B1 | В0 | | | Black | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Red (0) / Dark | 0 | | | Red (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | C | Red (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Gray
Scale | : | | | : | | Of | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | ; | : | : | : | : | : | : | : | : | : | | Red | Red (1021) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | | Rea | Red (1022) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Red (1023) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Green (0) / Dark | 0 | | | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | Green (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | : | | Scale | : | | Of | Green (1021) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | Green (1022) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (1023) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (0) / Dark | 0 | | | Blue (1) | 0 | 1 | | C | Blue (2) | 0 | 1 | 0 | | Gray | · · · : | | Scale | : | : | : | : | : | | : | : | : | : | : | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | Blue (1021) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | Blue | Blue (1022) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (1023) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1) 0: Low Level Voltage, 1: High Level Voltage #### 5. INTERFACE TIMING #### **5.1 INPUT SIGNAL TIMING SPECIFICATIONS** The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |----------------------|--------------------------------------|------------------|-----------|------|-----------|------|------| | | Intra-Pair skew | | -0.3 | _ | 0.3 | UI | (2) | | | Inter-pair skew | | -5 | _ | 5 | UI | (3) | | V-by-One
Receiver | Spread spectrum modulation range | Fclkin_mod | 1/Tc-0.5% | _ | 1/Tc+0.5% | MHz | (4) | | | Spread spectrum modulation frequency | F _{SSM} | _ | _ | 30 | KHz | (4) | #### **5.1.1** Timing spec for QFHD Mode Frame Rate =45~ 63Hz | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |--------------------------------|-------------|---------|-------|-------|------|------|------------| | Frequency | Data Clock | 1/Tc | 70 | 74.25 | 80 | MHZ | (1) | | Frame Rate | OFLID M. J. | F_{r} | 45 | 60 | 63 | Hz | (5),(6) | | Horizontal
Frequency | QFHD Mode | Fh | 122.8 | 135 | 140 | KHz | | | Vertical Active | Total | Tv | 2200 | 2250 | 2790 | Th | Tv=Tvd+Tvb | | Display Term (8 Lane,3840X2160 | Display | Tvd | | 2160 | | | | | Active Area) | Blank | Tvb | 40 | 90 | 630 | Th | | | Horizontal Active | Total | Th | 530 | 550 | 570 | Tc | Th=Thd+Thb | | Display Term (8 Lane,3840X2160 | Display | Thd | | 480 | | | _ | | Active Area) | Blank | Thb | 50 | 70 | 90 | Тс | | Note (1) Please make sure the range of pixel clock has follow the below equation : $$Fclkin(max) \ge Fr \times Tv \times Th$$ $$Fr \times Tv \times Th \ge Fclkin (min)$$ #### **INPUT SIGNAL TIMING DIAGRAM** Note (2) V-by-One HS Intra-pair Data skew(更新以下圖示) Note (3) V-by-One HS Inter-pair skew. Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures. - Note (5) For converter reference signals, the frame-to-frame jitter of the input frame rate is defined as the above figures. FRn = $FRn-1 \pm 1.8\%$ - Note (6) For converter reference signals, The setup of the frame rate jitter > 1.8% may result in the cosmetic LED backlight symptom. #### **5.2 TIMING DRAGRAM** #### 5.2.1 V by One Input Signal Timing Diagram The eye diagram is measured by the oscilloscope and receiver CDR characteristic must be emulated. PLL bandwidth: 15MHz Damping factor: 1.4 Table 1 Eye Mask Specification | | X [UI] | Y [mV] | Note | |---|--------|--------|------| | A | 0.25 | 0 | (1) | | В | 0.3 | 50 | (1) | | С | 0.7 | 50 | (1) | | D | 0.75 | 0 | (1) | | Е | 0.7 | -50 | (1) | | F | 0.3 | -50 | (1) | Note (1) Input levels of V-by-One HS signals are comes from "V-by-One HS Stander Ver.1.4" #### 5.3 Byte Length and Color mapping of V-by-One HS | Packer input | - | 201 PCP (101.1) | | | | | | | |--------------|-------|-------------------|--|--|--|--|--|--| | Unpacker ou | | 30bpp RGB (10bit) | | | | | | | | • | D[0] | R[2] | | | | | | | | | D[1] | R[3] | | | | | | | | | D[2] | R[4] | | | | | | | | D (0 | D[3] | R[5] | | | | | | | | Byte 0 | D[4] | R[6] | | | | | | | | | D[5] | R[7] | | | | | | | | | D[6] | R[8] | | | | | | | | | D[7] | R[9] | | | | | | | | | D[8] | G[2] | | | | | | | | | D[9] | G[3] | | | | | | | | | D[10] | G[4] | | | | | | | | Desta 1 | D[11] | G[5] | | | | | | | | Byte 1 | D[12] | G[6] | | | | | | | | | D[13] | G[7] | | | | | | | | | D[14] | G[8] | | | | | | | | | D[15] | G[9] | | | | | | | | | D[16] | B[2] | | | | | | | | | D[17] | B[3] | | | | | | | | | D[18] | B[4] | | | | | | | | Brito 2 | D[19] | B[5] | | | | | | | | Byte 2 | D[20] | B[6] | | | | | | | | | D[21] | B[7] | | | | | | | | | D[22] | B[8] | | | | | | | | | D[23] | B[9] | | | | | | | | | D[24] | X | | | | | | | | | D[25] | X | | | | | | | | | D[26] | B[0] | | | | | | | | Byto 2 | D[27] | B[1] | | | | | | | | Byte 3 | D[28] | G[0] | | | | | | | | | D[29] | G[1] | | | | | | | | | D[30] | R[0] | | | | | | | | | D[31] | R[1] | | | | | | | #### 5.4 POWER ON/OFF SEQUENCE To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below - Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc. - Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen. - Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance besides LOCKN. If T2<0, that maybe cause electrical overstress failure. - Note (4) T4 should be measured after the module has been fully discharged between power off and on period. - Note (5) Interface signal shall not be kept at high impedance when the power is on. - Note (6) Vcc must decay smoothly when power-off. - Note (7) When the I2C Command is after backlight turns on, the display may momentarily become abnormal screen. - Note (8) T16, V-by-One signals shall be stabilized and follows timing specification which defined by section 5.1&5.2 #### 5.5 I2C timing SPEC | Symbol | Parameter | Min. | Max. | Unit | |---------------------|---|------|------|------| | f_{SCL} | SCL clock frequency | | 400 | KHz | | t _{SU-STA} | Start setup time | 600 | ı | ns | | t _{HD-STA} | Start hold time | 600 | ı | ns | | $t_{ ext{SU-DAT}}$ | Data setup time | 200 | ı | ns | | t _{HD-DAT} | Data hold time | 200 | - | ns | | t _{SU-STO} | Stop setup time | 600 | - | ns | | $t_{ m LOW}$ | SCL clock pulse width low | 1300 | - | ns | | t _{HIGH} | SCL clock pulse width high | 600 | ı | ns | | t _{BUF} | Time between Stop condition and next
Start condition | 1300 | 1 | ns | Version 2.3 Date: Jun.16, 2023 #### 6. OPTICAL CHARACTERISTICS #### **6.1 TEST CONDITIONS** | Item | Symbol | Value | Unit | | | | |--|----------|--------|------|--|--|--| | Ambient Temperature | Ta | 25±2 | °C | | | | | Ambient Humidity | На | 50±10 | %RH | | | | | Supply Voltage | V_{CC} | 12±1.2 | V | | | | | Input Signal According to typical value in "3. ELECTRICAL CHARACTERIST | | | | | | | | Vertical Frame Rate | Fr | 60 | Hz | | | | The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room. #### **6.2 OPTICAL SPECIFICATIONS** The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1. | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | |---------------------------|------------------------------|-------------------|---|-------------|-------|--------------|-------------------|----------| | Contrast Ratio | | CR | | 3360 | 5000 | - | - | Note (2) | | Response Time | | Gray to gray | | | 9.5 | 19 | ms | Note (3) | | Center Luminance of White | | L _C | | 440 | 550 | - | cd/m ² | Note (4) | | White Variation | | δW | | | | 1.3 | - | Note (6) | | Cross Talk | | CT | | - | | 4 | % | Note (5) | | Color
Chromaticity | Red | Rx | | | 0.670 | Typ.+ - 0.03 | - | | | | | Ry | $\theta_{\rm x}=0^{\circ}$, $\theta_{\rm Y}=0^{\circ}$ | | 0.308 | | - | | | | Green | Gx | Viewing angle at
normal direction | Typ
0.03 | 0.266 | | - | | | | | Gy | | | 0.655 | | - | | | | Blue | Bx | | | 0.151 | | - | | | | | Ву | | | 0.052 | | - | | | | White | Wx | | | 0.280 | | - | | | | | Wy | | | 0.290 | | - | | | | Correlated color temperature | | | - | 10000 | - | K | | | | Color
Gamut | C.G. | | - | 88 | - | % | NTSC | | Viewing
Angle | Horizontal | θ_x + | CR≥10 | 80 | 89 | - | Deg. | | | | | θ _x - | | 80 | 89 | - | | (1) | | | Vertical | $\theta_{ m Y}$ + | | 80 | 89 | - | | (1) | | | | θ _Y - | | 80 | 89 | - | | | Note (1) Definition of Viewing Angle (θx , θy): Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R) Note (2) Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression. L1023: Luminance of gray level 1023 L0: Luminance of gray level 0 CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6). Note (3) Definition of Gray-to-Gray Switching Time (VA Model): # Optical Response 100 % 90 % Time Gray to Gray Gray to Gray The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023. Switching Time Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other. Switching Time Note (4) Definition of Luminance of White (L_C) : Measure the luminance of gray level 1023 at center point. $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (6). Note (5) Definition of Cross Talk (CT): (VA Model) $$CT = | YB - YA | / YA \times 100 (\%)$$ Where: YA = Luminance of measured location without gray level 1023 pattern (cd/m2) YB = Luminance of measured location with gray level 1023 pattern (cd/m2) Note (6) Definition of White Variation (δW): Measure the luminance of gray level 1023 at 5 points $$\delta W = \frac{\text{Maximum} [L (1), L (2), L (3), L (4), L (5)]}{\text{Minimum} [L (1), L (2), L (3), L (4), L (5)]}$$ #### 7. PRECAUTIONS #### 7.1 ASSEMBLY AND HANDLING PRECAUTIONS - [1] Do not apply rough force such as bending or twisting to the module during assembly. - [2] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight. - [3] Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape. - [4] It should be attached to the system firmly using all mounting holes. - [5] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer, do not press or scratch the surface harder than a HB pencil lead. - [6] Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process. - [7] Protection film for polarizer on the module should be slowly peeled off just before use so that the electrostatic charge can be minimized. - [8] Do not disassemble the module. - [9] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips. - [10] Do not plug in or pull out the I/F connector while the module is in operation, pins of I/F connector should not be touched directly with bare hands. Do not adjust the variable resistor located on the module. - [11] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched. Water, IPA (Isoproyl Alcohol) or Hexane are desirable cleaners. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction. - [12] Moisture can easily penetrate into LCD module and may cause the damage during operation. - [13] When storing modules as spares for a long time, the following precaution is necessary. - [13.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity (under 70%) without condensation. - [13.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light. - [14] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature. #### 7.2 SAFETY PRECAUTIONS To optimize PID module's lifetime and functions, operating conditions should be followed as below - [1] Normal operating condition - [1.1] Temperature : $20\pm15^{\circ}$ C - [1.2] Humidity: 55±20% - [1.3] Well-ventilated place is suggested to set up PID module and system. - [1.4] Display pattern: regular switched patterns or moving pictures. - [2] Operation usage to protect against image sticking due to long-term static display. - [2.1] Suitable operating time: under 24 hours a day. - (* The moving picture can be allowed for 24 hours a day) - [2.2]Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image. - [2.3] Periodical display contents should be changed from static image to moving picture. - [2.3.1] Different background and image colors changed respectively, and changed colors periodically. - [2.3.2] Background and image with large different luminance displayed at the same time should be avoided. - [2.3.3] Periodical power-off the system for a while or screen saver is needed after long-term static display. - [2.3.4] Moving picture or black pattern is strongly recommended for screen saver. - [3] The startup voltage of a Backlight may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the Backlight unit. - [4] Do not connect or disconnect the module in the "Power On" condition. - [5] Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature...) Otherwise the module may be damaged. - [6] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap. - [7] Module should be turned clockwise (regular front view perspective) when used in portrait mode. - [8] Ultra-violet ray filter is necessary for outdoor operation. - [9] Only when PID module is operated under right operating conditions, lifetime in this spec can be guaranteed. After the module's end of life, it is not harmful in case of normal operation and storage. #### 7.3 SAFETY STANDARDS The LCD module should be certified with safety regulations as follows: | Regulatory | | Item | Standard | | |---------------------|------------|------|---|--| | | | | UL 60950-1,2nd Ed, 2014 | | | Information | Technology | cUL | CSA C22.2 No.60950-1-07, 2nd Ed,2014-10 | | | equipment | | СВ | IEC60950-1:2005+ A1:2009+ A2:2013 /
EN60950-1:2006+ A11:2009+ A1:2010+ A12:2011+ A2:2013 | | | | | UL | UL 60065, 7th Edition, 2013 | | | Audio/Video Apparat | us | cUL | CAN/CSA-C22.2 No. 60065-03, 1st Edition + A1:2006 + A2: | | | | | СВ | IEC 60065:2001 (Seventh Edition)+ A1:2005+A2:2010 /
EN60065:2002+ A1:2006+ A11:2008+ A2:2010+ A12:2011 | | If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred. #### 8. DEFINITION OF LABELS #### **8.1 MODULE LABEL** The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. Model Name: S400DJ1-KS5 Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc. Serial ID includes the information as below: Manufactured Date: Year : 2010=0, 2011=1, 2012=2...etc. Month : 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U. Revision Code: Cover all the change Serial No.: Manufacturing sequence of product Product Line: $1\rightarrow$ Line1, $2\rightarrow$ Line 2, ...etc. #### **8.2 CARTON LABEL** The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation. Model Name: S400DJ1-KS5 Serial ID includes the information as below: Manufactured Date: Year: 2010=0, 2011=1, 2012=2...etc. Month: 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U. Revision Code: Cover all the change #### 9. PACKAGING #### 9.1 PACKAGING SPECIFICATIONS (1) 12 LCD TV modules / 1 Box (2) Box dimensions: 975(L) X 567 (W) X 625 (H) (3) Weight: approximately 101.5 Kg #### 9.2 PACKAGING METHOD Packaging method is shown in following figures. # Sea / Land Transportation (40ft HQ Container) 1+1+1 Layer # Film Film PE Sheet Corner Protector (L = 835,t = 3mm) Film Film Film PP Belt Corner Protector (L = 628,t = 7mm) (L1150*W990*H143mm) # Sea / Land Transportation (40ft Container) 1+1 Layer Air Transportation 1 Layer #### 9.3 UN-PACKAGING METHOD Un-packaging method is shown in following figures. #### 10. MECHANICAL CHARACTERISTIC