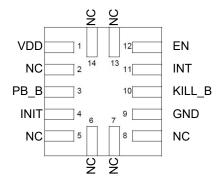


GreenPAK ™

Interrupt Controller

General Description

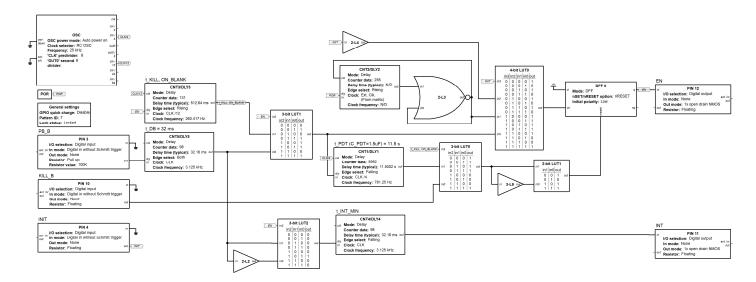
Dialog SLG4G42480 is a low power and small form device. The SoC is housed in a 2mm x 2.2mm STQFN package which is optimal for using with small devices.


Features

- Low Power Consumption
- Pb Free / RoHS Compliant
- Halogen Free
- STQFN 14 Package

Output Summary

2 Outputs - Open Drain NMOS 1X


Pin Configuration

14-pin STQFN (Top View)

Block Diagram

Pin Configuration

Pin#	Pin Name	Туре	Type Pin Description	
1	VDD	PWR	Supply Voltage	
2	NC		Keep Floating or Connect to GND	
3	PB_B	Digital Input	Digital Input without Schmitt trigger	100kΩ pullup
4	INIT	Digital Input	Digital Input without Schmitt trigger	floating
5	NC	-	Keep Floating or Connect to GND	
6	NC		Keep Floating or Connect to GND	
7	NC		Keep Floating or Connect to GND	
8	NC	-	Keep Floating or Connect to GND	
9	GND	GND	Ground	
10	KILL_B	Digital Input	Digital Input without Schmitt trigger	floating
11	INT	Digital Output	Open Drain NMOS 1X	floating
12	EN	Digital Output	Open Drain NMOS 1X	floating
13	NC	-	Keep Floating or Connect to GND	
14	NC	-	Keep Floating or Connect to GND	

Ordering Information

	-
Part Number	Package Type
SLG4G42480V	14-pin STQFN
SLG4G42480VTR	14-pin STQFN - Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit	
Supply Voltage on VDD relative to 0	GND	-0.5	7	V
DC Input Voltage		GND - 0.5V	VDD + 0.5V	V
Maximum Average or DC Current (Through pin)		8	mA	
Current at Input Pin	-1.0	1.0	mA	
Input Leakage (Absolute Value)		1000	nA
Storage Temperature Range		-65	150	°C
Junction Temperature		150	°C	
ESD Protection (Human Body Mod	2000		V	
ESD Protection (Charged Device M	1300	-	V	
Moisture Sensitivity Level		1		

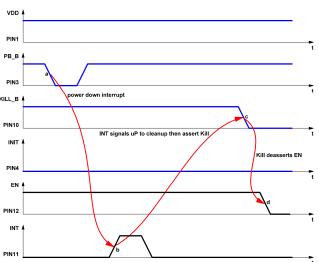
Electrical Characteristics

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		3	3.3	3.6	V
T _A	Operating Temperature		-40	25	85	°C
C_VDD	Capacitor Value at VDD			0.1		μF
CIN	Input Capacitance			4		pF
ΙQ	Quiescent Current	Static inputs and floating outputs. PIN10 and PIN4 are LOW		1		μΑ
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
	Maximum Average or DC	T _J = 85°C			45	mA
I_{VDD}	Current Through VDD Pin (Per chip side, see Note 2)	T _J = 110°C			22	mA
	Maximum Average or DC	T _J = 85°C			84	mA
I _{GND}	Current Through GND Pin (Per chip side, see Note 2)	T _J = 110°C			40	mA
V _{IH}	HIGH-Level Input Voltage	Logic Input at VDD=3.3V	1.780			V
V _{IL}	LOW-Level Input Voltage	Logic Input at VDD=3.3V			1.210	V
Vol	LOW-Level Output Voltage	Open Drain NMOS 1X, I _{OL} =3mA, at VDD=3.3V		0.080	0.147	V
I _{OL}	LOW-Level Output Current (Note 1)	Open Drain NMOS 1X, V _{OL} =0.4V, at VDD=3.3V	7.313	12.370		mA
R _{PULL_UP}	Internal Pull Up Resistance	Pull up on PIN 3	70	100	130	kΩ
		At temperature 25°C	11.19	11.50	11.83	S
T _{DLY1}	Delay1 Time	At temperature -40 +85°C (Note 3)	10.06	11.50	13.97	S
		At temperature 25°C	497.14	512.64	529.18	μs
T _{DLY3}	Delay3 Time	At temperature -40 +85°C (Note 3)	447.11	512.64	624.75	μs
		At temperature 25°C	31.14	32.16	33.26	μs
T _{DLY4}	Delay4 Time	At temperature -40 +85°C (Note 3)	28.01	32.16	39.27	μs
T _{DLY5}	Delay5 Time	At temperature 25°C	31.14	32.16	33.26	μs

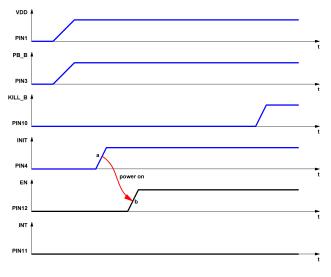
		At temperature -40 +85°C (Note 3)	28.01	32.16	39.27	μs
T _{SU}	Startup Time	from VDD rising past 1.35 V	-	0.3		ms
PONTHR	Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.096	1.353	1.528	V
POFF _{THR}	Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	0.759	0.933	1.125	V

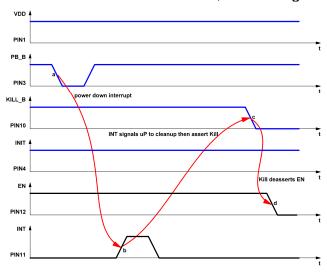

Note

- 1. DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.
- 2. The GreenPAK's power rails are divided in two sides. Pins 2, 3, 4, 5, 6, 7 and 8 are connected to one side, pins 10, 11, 12, 13 and 14 to another.
- 3. Guaranteed by Design.

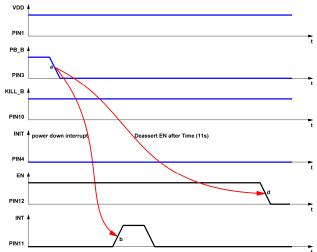


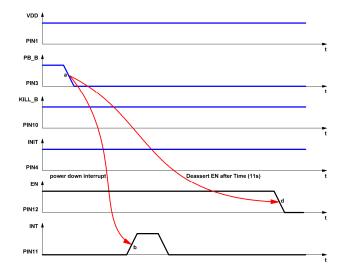
Timing Diagram

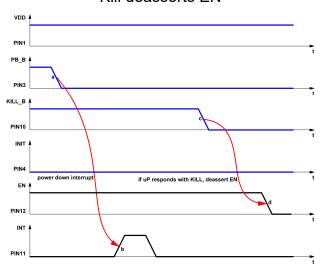

Power Up, INIT is Low, PB_B assert EN, Ignore Kill

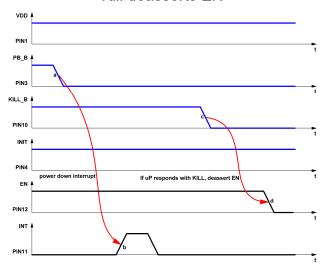

Power Down via Short Push, INIT is Low

Power Up, INIT is High, Assert EN, Ignore Kill


Power Down via Short Push, INIT is High




Power Down via Long Push, INIT is Low, No Kill


Power Down via Long Push, INIT is High, No Kill

Power Down via Long Push, INIT is Low, Kill deasserts EN

Power Down via Long Push, INIT is High, Kill deasserts EN

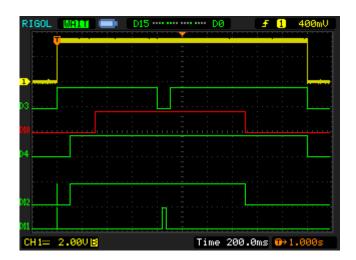
Functionality Waveforms

Channel 1 (yellow/top line) - PIN# 1 (VDD)

D3 – PIN#3 (PB B)

D4 – PIN#4 (INIT)

D10 - PIN#10 (KILL B)


D11 – PIN#11 (INT) with external $5k\Omega$ pull up resistor

D12 – PIN#12 (EN) with external $5k\Omega$ pull up resistor

1. Power Up, INIT is Low, PB_B assert EN, Ignore Kill and Power Down via Short Push, INIT is Low

2. Power Up, INIT is High, Assert EN, Ignore Kill and Power Down via Short Push, INIT is High

3. Power Up, INIT is Low, PB_B assert EN, Ignore Kill and Power Down via Long Push, INIT is low, No Kill

4. Power Up, INIT is High, Assert EN, Ignore Kill and Power Down via Long Push, INIT is high, No Kill

Channel 1 (yellow/top line) - PIN# 1 (VDD)

D3 - PIN#3 (PB_B)

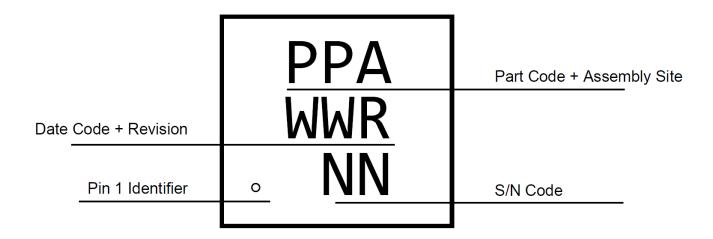
D4 - PIN#4 (INIT)

D10 - PIN#10 (KILL B)

D11 – PIN#11 (INT) with external $5k\Omega$ pull up resistor

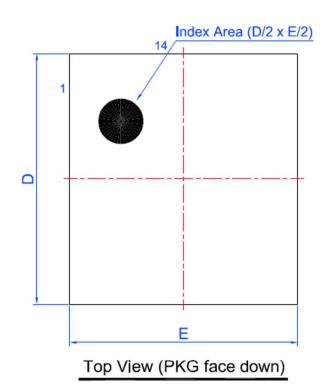
D12 – PIN#12 (EN) with external $5k\Omega$ pull up resistor

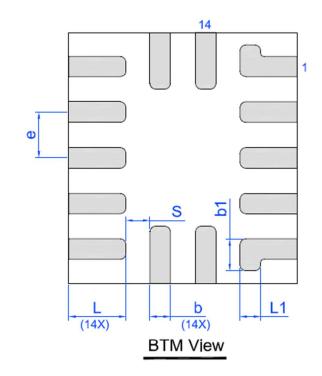
5. Power Up, INIT is Low, PB_B assert EN, Ignore Kill and Power Down via Long Push, INIT is low, Kill deasserts EN

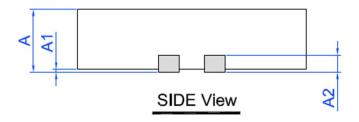


6. Power Up, INIT is High, Assert EN, Ignore Kill and Power Down via Long Push, INIT is high, Kill deasserts EN

Package Top Marking


Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
1.00	007	L	0x38C0C0BD	A5	Ш	04/25/2019


The IC security bit is locked/set for code security for production unless otherwise specified. Revision number is not changed for bit locking.

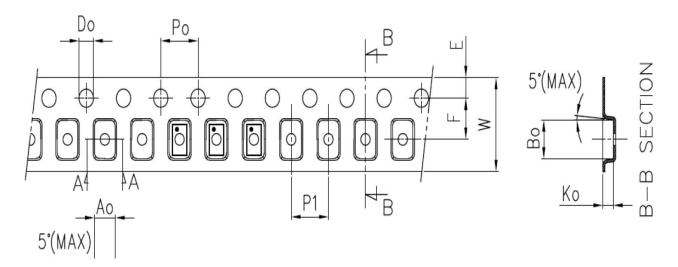


Package Drawing and Dimensions

STQFN 14L 2 x 2.2mm 0.4P COL Package JEDEC MO-220, Variation WECE

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	2.15	2.20	2.25
A1	0.005	-	0.050	Е	1.95	2.00	2.05
A2	0.10	0.15	0.20	L	0.45	0.50	0.55
b	0.13	0.18	0.23	S	(0.21 TYP	
е	0.40 BSC			b1	0.28 TYP		
			_	L1	(0.18 TYP	



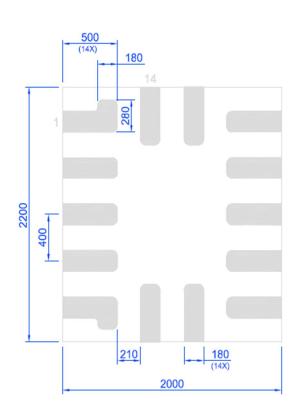
Tape and Reel Specification

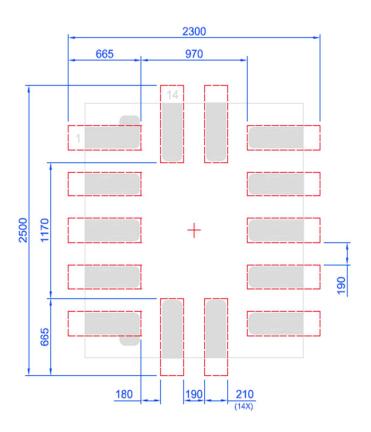
Package	# of	Nominal	Max Units		Reel & Hub	Leader (min)		Trailer (min)		Tape Width	Part Pitch
Type	Pins	Package Size [mm]	per Reel	per Box	Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	[mm]	[mm]
STQFN 14L 2x2.2mm 0.4P COL	14	2x2.2x0.55	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth K0	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
STQFN 14L 2x2.2 mm 0.4P COL	2.2	2.35	0.8	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile


Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 2.42 mm³ (nominal). More information can be found at www.jedec.org.



Recommended Land Pattern

Exposed Pad (PKG face down)

Recommended Land Pattern (PKG face down)

Unit:um

Datasheet Revision History

Date	Version	Change
05/08/2018	0.10	New design for SLG46170 chip
05/25/2018	0.11	Implemented invariable INTERRUPT period. Added ON_BLANK functionality to
		correct KILL_B work
05/30/2018	0.12	Updated Device Revision Table
06/27/2018	0.13	Added INIT-pin to select start-up logic
06/29/2018	0.14	Updated Device Revision Table
07/02/2018	0.15	Changed the name of PIN 11 (INT_B to INT)
07/18/2018	0.16	Corrected INIT-functionality
07/20/2018	0.17	Updated Device Revision Table
08/08/2018	0.18	Corrected functionality of KILL_B
08/08/2018	0.19	Updated Device Revision Table
11/20/2018	0.20	Fixed the issue of the INIT-function
04/15/2019	0.21	Updated Lock-Status
04/25/2019	1.00	Production Release

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058