LVNET EMBEDDED # **DATASHEET** TX26D200VM2BVA Kaohsiung Opto-Electronics Inc. | FOR MESSRS : | DATE: Oct. 8 th ,2020 | |--------------|----------------------------------| | | | ## CUSTOMER'S ACCEPTANCE SPECIFICATIONS # TX26D200VM2BVA ## Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|------------------------------|------------| | 1 | COVER | 7B64PS 2701-TX26D200VM2BVA-3 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX26D200VM2BVA-3 | 2-1/2~2/2 | | 3 | GENERAL DATA | 7B64PS 2703-TX26D200VM2BVA-3 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX26D200VM2BVA-3 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX26D200VM2BVA-3 | 5-1/2~2/2 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX26D200VM2BVA-3 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707-TX26D200VM2BVA-3 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX26D200VM2BVA-3 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX26D200VM2BVA-3 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX26D200VM2BVA-3 | 10-1/2~2/2 | | 11 | TOUCH PANEL | 7B64PS 2711-TX26D200VM2BVA-3 | 11-1/1 | | 12 | APPEARANCE STANDARD | 7B64PS 2712-TX26D200VM2BVA-3 | 12-1/5~5/5 | | 13 | PRECAUTIONS | 7B64PS 2713-TX26D200VM2BVA-3 | 13-1/2~2/2 | | 14 | DESIGNATION OF LOT MARK | 7B64PS 2714-TX26D200VM2BVA-3 | 14-1/1 | ACCEPTED BY: <u>Oblack Tsai</u> | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2701-TX26D200VM2BVA-3 | PAGE | 1-1/1 | |---------------------------------|--------------|------------------------------|------|-------| |---------------------------------|--------------|------------------------------|------|-------| # 2. RECORD OF REVISION | DATE | SHEET No. | SUMMARY | | | | | | |------------|--|---|--|--|--|--|--| | Feb.26,'20 | 7B64PS 2703-
TX26D200VM2BVA-2
Page 3-1/1 | 3.1 DISPLAY FEATURES Revised: Number of Colors 16.7M Colors (8-bit RGB) → 262K Colors (6-bit RGB) | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-2
Page 9-1/7 | 9.1 INTERFACE PIN CONNECTIONS Revised: Pin 17 IN3- (Pixel Data) → NC (No Connection) Pin 18 IN3+ (Pixel Data) → NC (No Connection) Note 2: INn- and INn+ (n=0,1,2,3) → Note 2: INn- and INn+ (n=0,1,2) | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-2
Page 9-2/7 | 9.2 LVDS INTERFACE Revised: 8 bit RGB → 6 bit RGB 9.3 LVDS DATA FORMAT | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-2
Page 9-3/7 | Revised : 8 bit RGB → 6 bit RGB 9.4 TIMING CHART Revised : Fig 9.1 RGB[0:7] → RGB[0:5] | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-2
Page 9-5/7 | 9.6 LVDS RECEIVER TIMING Revised: $(X=0, 1, 2, 3) \rightarrow (X=0, 1, 2)$ | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-2
Page 9-6/7 | 9.7 DATA INPUT for DISPLAY COLOR Revised: 8 bit RGB → 6 bit RGB | | | | | | | Oct. 8,'20 | 7B64PS 2703-
TX26D200VM2BVA-3
Page 3-1/1 | 3.1 DISPLAY FEATURES Revised: Number of Colors 262K Colors (6-bit RGB) → 16.7M Colors (8-bit RGB) | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-3
Page 9-1/7 | 9.1 INTERFACE PIN CONNECTIONS Revised: Pin 5,6 (Pixel Data) → (R2~R7,G2) Pin 8,9 (Pixel Data) → (G3~G7,B2~B3) Pin 11,12 (Pixel Data) → (B4~B7,DE) Pin 17 NC (No Connection) → IN3- (R0~R1,G0~G1,B0~B1) Pin 18 NC (No Connection) → IN3+ (R0~R1,G0~G1,B0~B1) Note 2: INn- and INn+ (n=0,1,2) → Note 2: INn- and INn+ (n=0,1,2,3) | | | | | | | | 7B64PS 2709-
TX26D200VM2BVA-3
Page 9-2/7 | 9.2 LVDS INTERFACE Revised: Machine Side | | | | | | KAOHSIUNG OPTO-ELECTRONICS INC. # 2. RECORD OF REVISION | DATE | SHEET No. | SUMMARY | |------------|--|--| | Oct. 8,'20 | 7B64PS 2709-
TX26D200VM2BVA-3 | 9.3 LVDS DATA FORMAT Revised : | | | Page 9-2/7 | 1 cycle | | | | CLK IN+ CLK IN- IN0+ IN0- IN0- IN1+ IN1- IN1- IN2+ IN2- IN2- IN3+ IN3- R1 R0 NA B1 B0 G1 G0 R1 R0 NA INA INA INA INA INA INA INA | | | 7B64PS 2709-
TX26D200VM2BVA-3
Page 9-3/7 | 9.4 TIMING CHART Revised : Fig 9.1 RGB[0:5] → RGB[0:7] | | | 7B64PS 2709-
TX26D200VM2BVA-3
Page 9-5/7 | 9.6 LVDS RECEIVER TIMING Revised : (X=0, 1, 2) → (X=0, 1, 2, 3) | | | 7B64PS 2709-
TX26D200VM2BVA-3
Page 9-6/7 | 9.7 DATA INPUT for DISPLAY COLOR Revised : 6 bit RGB → 8 bit RGB | | | | | KAOHSIUNG OPTO-ELECTRONICS INC. ## 3. GENERAL DATA #### 3.1 DISPLAY FEATURES This module is a 10.4" SVGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially. This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX26D200VM2BVA | |-------------------------|---| | Module Dimensions | 259.2(W) mm x 206.4(H) mm x 12.98(D) mm | | LCD Active Area | 211.2(W) mm x 158.4(H) mm | | Pixel Pitch | 0.264(W) mm x 0.264(H) mm | | Resolution | 800 x 3(RGB)(W) x 600(H) Dots | | Color Pixel Arrangement | R, G, B Vertical Stripe | | LCD Type | Transmissive Color TFT; Normally White | | Display Type | Active Matrix | | Number of Colors | 16.7M Colors (8-bit RGB) | | Backlight | Light Emitting Diode (LED) | | Weight | 638g | | Interface | LVDS; 20 pins | | Power Supply Voltage | 3.3V for LCD; 12V for Backlight | | Power Consumption | 1.16W for LCD; 6.48W for Backlight | | Viewing Direction | 12 O'clock (without image inversion and least brightness change) 6 O'clock (contrast peak located at) | | Touch Panel | Projected Capacitive type ; Cover Glass on ITO Film | ## 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|-----------------|------|----------------------|------|---------| | Supply Voltage | V_{DD} | 0 | 5.0 | V | - | | Input Voltage of Logic | Vı | -0.3 | V _{DD} +0.3 | ٧ | Note 1 | | Operating Temperature | Top | -20 | 70 | °C | Note 2 | | Storage Temperature | T _{st} | -30 | 80 | °C | Note 2 | | Backlight Input Voltage | V_{LED} | - | 15 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}\,.$ - Operating under high temperature will shorten LED lifetime. ## 5. ELECTRICAL CHARACTERISTICS #### 5.1 LCD CHARACTERISTICS $T_a = 25 \, ^{\circ}C, \, \, \text{Vss} = 0 \text{V}$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |--|-----------------|------------------------------|------|------|------|------|----------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Differential Input | | "H" level | - | - | +100 | | | | Voltage for LVDS
Receiver Threshold | Vı | "L" level | -100 | - | - | mV | Note 1 | | Power Supply Current | I _{DD} | V_{DD} - V_{SS} =3.3 V | - | 350 | 483 | mA | Note 2,3 | | Frame Frequency | $f_{\it Frame}$ | - | - | 60 | 66 | Hz | | | CLK Frequency | $f_{\it CLK}$ | - | 32.3 | 40 | 50 | MHz | - | Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS receiver is terminated with 100Ω . Note 2: An all black check pattern is used when measuring I_{DD} . $f_{\textit{Frame}}$ is set to 60Hz. Note 3: 1.0A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred. | SHEET | |-------| | NO. | #### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, {}^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|---------------------|--------------------------|------|------|------|------|---------| | LED Input Voltage | V _{LED} | - | 11.0 | 12.0 | 13.0 | V | Note1 | | LED Forward Current | it I _{LED} | 0V; 0% duty | 490 | 540 | 590 | mA | Note 2 | | | | 3.3VDC; 100% duty | 50 | 60 | 70 | | | | LED lifetime | - | I _{LED} =540 mA | - | 70K | - | hrs | Note 3 | - Note 1: As Fig. 5.1 shown, LED current is constant, 540 mA, controlled by the LED driver when applying 12V V_{LED}. - Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude. - Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 540 mA at 25° C. ## 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25°C. - In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. | T = 2 | 5 °C f | = 60 Hz | $V_{\text{DD}} = 3.3V$ | |-----------|----------------------|------------|------------------------| | $I_a - Z$ | J C , J_{Fran} | , – UUTIZ, | V DD — 3.3 V | | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---|---------------|-------------|--|------|------|------|--------|---------| | Brightness of White Brightness Uniformity | | - | | 1000 | 1300 | - | cd/m² | Note 1 | | | | - | $\phi = 0^{\circ}, \theta = 0^{\circ},$ $I_{LED} = 540 \text{ mA}$ | 70 | - | - | % | Note 2 | | Contrast F | Ratio | CR | ILED- 540 IIIA | 400 | 800 | - | - | Note 3 | | Response | Time | Tr + Tf | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 20 | - | ms | Note 4 | | NTSC Ra | atio | ı | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 50 | - | % | - | | | | θ x | $\phi = 0^{\circ}$, CR ≥ 10 | 60 | 80 | - | | | |) (i a conica ao A | Viewing Angle | θ x' | φ = 180°, CR ≥ 10 | 60 | 80 | - | Degree | Note 5 | | viewing A | | θ y | $\phi = 90^{\circ}, CR \ge 10$ | 40 | 60 | - | | | | | | θ y' | $\phi=270^{\circ}$, CR ≥ 10 | 60 | 80 | - | | | | | Dad | Χ | | 0.55 | 0.60 | 0.65 | - | | | | Red | Υ | | 0.28 | 0.33 | 0.38 | | | | | 0 | Х | | 0.29 | 0.34 | 0.39 | | | | Color | Green | Υ | / 0° 0 0° | 0.55 | 0.60 | 0.65 | | | | Chromaticity | Dive | Χ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 0.10 | 0.15 | 0.20 | | Note 6 | | | Blue | Υ | | 0.10 | 0.15 | 0.20 | | | | | \\/bito | Χ | | 0.24 | 0.29 | 0.34 | | | | | White | Y | | 0.29 | 0.34 | 0.39 | | | Note 1: The brightness is measured from 9 point of the panel, P1~P9 in Fig. 6.2, for the average value. Note 2: The brightness uniformity is calculated by the equation as below: Brightness uniformity = $$\frac{\text{Min. Brightness}}{\text{Max. Brightness}}$$ X100% KAOHSIUNG OPTO-ELECTRONICS INC. Fig 6.1 SHEET NO. 7B64PS 2706-TX26D200VM2BVA-3 PAGE 6-1/2 Note 3: The Contrast ratio is measured from the center point of the panel, P5, and defined as the following equation: Brightness of White Brightness of Black Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, Falling time is the period from 10% brightness rising to 90% brightness. Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. Fig 6.4 Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. ## 7. BLOCK DIAGRAM Note: Signals are CLK and pixel data pairs. ## 8. RELIABILITY TESTS | Test Item | Condition | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | High Temperature | 1) Operating
2) 70℃ | 240 hrs | | | | | | | Low Temperature | 1) Operating
2) -20°C | 240 hrs | | | | | | | High Temperature | 1) Storage
2) 80℃ | 240 hrs | | | | | | | Low Temperature | 1) Storage
2) -30°C | 240 hrs | | | | | | | Heat Cycle | 1) Operating
2) −20°C~70°C
3) 3hrs~1hr~3hrs | 240 hrs | | | | | | | Thermal Shock | 1) Non-Operating
2) -35°C ↔ 85°C
3) 0.5 hr ↔ 0.5 hr | 240 hrs | | | | | | | High Temperature & Humidity | 1) Operating 2) 40℃ & 85%RH 3) Without condensation | 240 hrs
(Note 3) | | | | | | | Vibration | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions | 1 hr for each direction | | | | | | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) ±X, ±Y and ±Z directions | Once for each direction | | | | | | | ESD | Operating Tip: 150 pF, 330 Ω Air discharge for glass: ± 8KV Contact discharge for metal frame: ± 8KV | 1) Glass: 9 points
2) Metal frame: 8 points
(Note 4) | | | | | | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40° C, the humidity needs to be reduced as Fig. 8.1 shown. Note 4: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition. | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2708-TX26D200VM2BVA-3 | PAGE | 8-1/1 | | |---------------------------------|--------------|------------------------------|------|-------|--| |---------------------------------|--------------|------------------------------|------|-------|--| ### 9. LCD INTERFACE #### 9.1 INTERFACE PIN CONNECTIONS The display interface connector is CN1 FI-SEB20P-HF13E made by JAE and pin assignment is as below: | Pin No. | Signal | Signal | Pin No. | Signal | Signal | |---------|----------|---------------------------------|---------|---------|-------------------| | 1 | V_{DD} | Power Supply for Logic | 11 | IN2- | D4. D7 DE | | 2 | SD | Scan Direction Control (Note 1) | 12 | IN2+ | B4~B7,DE | | 3 | Vss | CNID | 13 | Vss | GND | | 4 | Vss | GND | 14 | CLK IN- | Dival Clask | | 5 | INO- | D0 D7 C0 | 15 | CLK IN+ | Pixel Clock | | 6 | IN0+ | R2~R7,G2 | 16 | Vss | GND | | 7 | Vss | GND | 17 | IN3- | D0 D4 C0 C4 D0 D4 | | 8 | IN1- | 02 07 02 02 | 18 | IN3+ | R0~R1,G0~G1,B0~B1 | | 9 | IN1+ | G3~G7,B2~B3 | 19 | NC | No Connection | | 10 | Vss | GND | 20 | DIM | Note 3 | Note 1: Scan direction is available to be switched as below. SD: High or Open (Default) SD: Low Note 2: INn- and INn+ (n=0,1,2,3), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively. Note 3: Note 3: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty. The backlight interface connector CN2 is SM02(8.0)B-BHS-1-TB made by JST, and pin assignment is as below: | Pin No. | Signal | Level | Function | |---------|--------------------|-------|----------------------| | 1 | V _{LED} + | - | Power Supply for LED | | 2 | V _{LED} - | - | GND | The capacitive touch panel interface FPC: Pitch 0.5mm 4pins Pin assignment is as below: | Pin No. | Signal | Level | Function | |---------|----------|-------|--------------------------| | 1 | V_{DD} | - | Power Supply for PCAP 5V | | 2 | D- | - | USB D- | | 3 | D+ | - | USB D+ | | 4 | Vss | - | GND | | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2709-TX26D200VM2BVA-3 | PAGE | 9-1/7 | | |---------------------------------|--------------|------------------------------|------|-------|--| |---------------------------------|--------------|------------------------------|------|-------|--| #### 9.2 LVDS INTERFACE - Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+,-) is used in differential mode. - Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module. - Note 3: The receiver built-in the module is THC63LVDM84B. #### 9.3 LVDS DATA FORMAT DE: Display Enable NA: Not Available **PAGE** ## 9.4 TIMING CHART th = 1056 CLK (1H) DE CLK 40M Hz (typ. 210CLK (typ.) thd = 800 CLK (fixed) 46 CLK (typ.) Invalid data Display data Invalid data R [0:7] G [0:7] B [0:7] Fig. 9.1 Horizontal Timing tv = 635 H (60 Hz)DE tvd = 600 H (fixed) 23H (typ.) 12H (typ.) Invalid lines Display lines Invalid lines **RGB** Fig. 9.2 Vertical Timing Tcph Tcwh CLK 30% Tdsu Tdhd Tcwl 70% 1st RGB 2nd RGB 800 RGB Data Tehd Tesu 70% DE Fig. 9.3 Setup & Hold Time SHEET KAOHSIUNG OPTO-ELECTRONICS INC. 7B64PS 2709-TX26D200VM2BVA-3 **PAGE** 9-3/7 NO. #### 9.5 TIME TABLE The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60 Hz to define. If 60 Hz is not the aim to set, less than 66 Hz for Vsync is recommended to apply for better performance by other parameter combination as the definitions in section 5.1. #### A. Horizontal and Vertical Timing | | Item | Symbol | Min. | Тур. | Max. | Unit | | |------------|---------------|--------|------|------|------|------|--| | | CLK Frequency | fclk | 32.3 | 40 | 50 | M Hz | | | Horizontal | Display Data | thd | | 0114 | | | | | | Cycle Time | th | 862 | 1056 | 1200 | CLK | | | Monthead | Display Data | tvd | 600 | | | | | | Vertical | Cycle Time | tv | 624 | 635 | 700 | Н | | ### B. Setup and Hold Time | | Item | Symbol | Min. | Тур. | Max. | Unit | |------|------------|--------|------|------|------|------| | CLIV | Duty | Tcwh | 40 | 50 | 60 | % | | CLK | Cycle Time | Tcph | 20 | 25 | - | | | Dete | Setup Time | | 8 | ı | - | | | Data | Hold Time | Tdhd | 8 | 1 | - | ns | | DE | Setup Time | Tesu | 8 | - | - | | | DE | Hold Time | Tehd | 8 | - | - | | ## 9.6 LVDS RECEIVER TIMING | | Item | Symbol | Min. | Тур. | Max. | Unit | |-------------|-------------------|--------|-----------------------------|-----------------------|-----------------------------|------| | CLK | Cycle frequency | 1/tcLK | 32.3 | 40 | 50 | MHz | | | 0 data position | tRP0 | 1/7* t _{CLK} -0.49 | 1/7* t _{CLK} | 1/7* t _{CLK} +0.49 | | | | 1st data position | tRP1 | -0.49 | 0 | +0.49 | | | Div | 2nd data position | tRP2 | 6/7* t _{CLK} -0.49 | 6/7* t _{CLK} | 6/7* t _{CLK} +0.49 | | | RinX | 3rd data position | tRP3 | 5/7* t _{CLK} -0.49 | 5/7* t _{ськ} | 5/7* t _{CLK} +0.49 | ns | | (X=0,1,2,3) | 4th data position | tRP4 | 4/7* t _{CLK} -0.49 | 4/7* t _{CLK} | 4/7* t _{CLK} +0.49 | | | | 5th data position | tRP5 | 3/7* t _{CLK} -0.49 | 3/7* t _{CLK} | 3/7* t _{CLK} +0.49 | | | | 6th data position | tRP6 | 2/7* t _{CLK} -0.49 | 2/7* t _{CLK} | 2/7* t _{CLK} +0.49 | | ## 9.7 DATA INPUT for DISPLAY COLOR | | | | | | Red | Data | l | | | | | G | Green | Dat | ta | | | | | | Blue | Data | ì | | | |-------|------------|-----|----|----|-----|----------|----|----|-----|----------|----|----|-------|-----|----|----|-----|----------|----|----|----------|----------|----------|----------|-----| | Inp | ut color | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | B5 | B4 | ВЗ | B2 | В1 | В0 | | | | MSB | | | | | | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | Black | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Black | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | | | : | : | : | : | • | : | : | : | - | : | : | : | : | : | : | : | : | : | : | : | 3 | : | : | : | : | | | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | - | : | : | : | : | | | : | | | Green(253) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Blue(1) | | 0 | | | Blue(2) | 0 | 0 | : | | 0 | 0 | 0 | 0 | : | 0 | : | | 0 | 0 | 0 | | : | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue | : | : | : | : | | : | | | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |] | Ŭ | | L | | <u> </u> | L | L | L | <u> </u> | | | | L | L | | | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | | KAOHSIUNG OPTO-ELECTRONICS | INC. | |----------------------------|------| #### 9.8 POWER SEQUENCE - Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on. - Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed. # 10. OUTLINE DIMENSIONS ## 10.1 FRONT VIEW Pin Assignment | USB | | | | | | | | |-----|--------|--|--|--|--|--|--| | 1 | VCC_5V | | | | | | | | 2 | D- | | | | | | | | 3 | D+ | | | | | | | | 4 | GND | | | | | | | General Tolerance:±0.5mm Scale: NTS Unit: mm KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64PS 2710-TX26D200VM2BVA-3 PAGE 10-1/2 ## 10.2 RAER VIEW General Tolerance:±0.5mm Scale : NTS Unit : mm KAOHSIUNG OPTO-ELECTRONICS INC. SHEET No. 7B64PS 2710-TX26D200VM2BVA-3 PAGE 10-2/2 ## 11. TOUCH PANEL The type of touch panel used on this display is capacitive touch panel film, and more characteristics are shown as below: #### 11.1 MECHANICAL CHARACTERISTICS | Item | Specification | Remarks | |-------------------|------------------------------------|-----------------------| | Thickness | t = 2.2 ± 0.2mm | - | | Cover Glass | t = 1.8 ± 0.3mm | Strengthened Glass | | Surface Hardness | 7H | - | | Input Method | Through a special stylus or finger | - | | FPC Peeling Force | 5N min. | Peeling upward by 90° | | Touch Panel | 10 points | - | #### 11.2 ELECTRICAL CHARACTERISTICS | Itom | Cumbal | Cymhal | Value | | | Linit | Remarks | | |------------------------------|---------------------|--------------------------------|----------------------|------|------|----------|---------|--| | Item | Symbol | Symbol | Min. | Тур. | Max. | Unit | Remarks | | | Power supply voltage | V_{DD} | V_{DD} -GND | 3.0 | 3.3 | 3.6 | V | - | | | Power supply voltage for USB | V _{USB} | V _{USB} -GND | - | 3.5 | 5 | V | - | | | Operation Current | I _{DD} | V_{DD} =3.3 V | - | - | 100 | mA | - | | | Idle Mode Current | l _{idid} | GND=0V
T _a =25°C | - | - | 100 | mA | - | | | Input High Level Voltage | V _{IH} | - | V _{DD} -0.8 | - | - | V | - | | | Input Low Level Voltage | VIL | - | - | - | 0.8 | V | - | | | Operating Frequency | 1/t _{clcl} | - | - | 12 | - | MHz | - | | | Operating High Level Voltage | Vон | I=2mA | V _{DD} -0.4 | - | - | V | - | | | Operating Low Level Voltage | Vol | I-ZIIIA | - | - | 0.4 | V | - | | #### 11.3 CONTROLLER CHARACTERISTICS The Capacitive Touch Panel features as below: - Controller IC is EXC3146, - Interface : USB - OS: Windows7, Android, Linux - Firmware information: Mode Name: SIRIUS_4268 Type Name: PCAP3146UR SERIES Version: 00_T1 #### 12. APPEARANCE STANDARD The appearance inspection is performed in a room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 #### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 2 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and touch panel V.A. In terms of housing design, B zone is the recommended window area customers' housing should be located in. C zone is the inking area of touch panel. Fig. 12.2 #### 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.3 and Fig. 12.4. | Item | | | Criteria | | | | Applied zone | |-----------------------|---|--|---|----------------|------------------|---------------|--------------| | | Length (mm) | W | /idth (mm) | Maximum r | umber | Minimum space | | | Constaling | Ignored | | $W \leq 0.02$ | Ignored | | - | A D | | Scratches | L≦40 | 0.02 | <w≦0.04< td=""><td>10</td><td></td><td>-</td><td>A,B</td></w≦0.04<> | 10 | | - | A,B | | | - | | W > 0.04 | Not allov | wed | - | | | Dent | | | Serious one is | s not allowed | | | Α | | Wrinkles in polarizer | | | Serious one is | s not allowed | | | Α | | | Average dia | ameter | r (mm) | Ма | ximum | number | | | | | D≦0.3 | 3 | | Ignor | ed | | | Bubbles on polarizer | 0.3<1 | D≦0.5 | 5 | | 10 | | Α | | | 0.5<1 | D≦1.0 |) | | 5 | | | | | 1.0< | D | | | none | е | | | | | | Filamentous | (Line shape) | | | | | | Length (mm) | | Width | (mm) | Max | imum number | | | | L : Ignored | | W | ≦0.06 | Ignored | | A,B | | | L≦1.0
1.0 <l< td=""><td colspan="2" rowspan="2">0.06 < W</td><td colspan="2">Ignored</td><td rowspan="2"></td></l<> | | 0.06 < W | | Ignored | | | | 1) Stains | | | | | (See Dot shape) | | | | 2) Foreign Materials | Round (Dot shape) | | | | | | | | 3) Dark Spot | Average diameter (mm) | | Maximum number | | Min | imum Space | | | | D≦0.45 | | Igno | red | | - | A,B | | | 0.45 <d≦0.7< td=""><td colspan="2">0.45<d≦0.7< td=""><td colspan="2">5</td><td>-</td><td>А,Б</td></d≦0.7<></td></d≦0.7<> | 0.45 <d≦0.7< td=""><td colspan="2">5</td><td>-</td><td>А,Б</td></d≦0.7<> | | 5 | | - | А,Б | | | 0.7 <d< td=""><td></td><td>noi</td><td>ne</td><td></td><td>-</td><td></td></d<> | | noi | ne | | - | | | | Those wiped out eas | ily are a | acceptable | | | | | | | | Ty | уре | | Max | imum number | | | | | | 1 d | lot | 4 | | | | | | | | 2 adjacent dot | | 2 | | | | Bright dot-defe | ct | 3 adjacent d | ot or above | ٨ | lot allowed | | | | | | Den | sity | 2/φ 20mm | | | | Dot-Defect | | | In to | otal | 6 | | Α | | (Note 1) | | | 1 d | dot | | 5 | | | | | | 2 adjac | ent dot | 2 | | | | | Dark dot-defed | ct | 3 adjacent d | ot or above | oove Not allowed | | | | | | | Den | sity | 3/φ 20mm | | | | | | In to | In total | | 5 | | | | | | In t | total | | | 11 | | | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2712-TX26D200VM2BVA-3 | PAGE | 12-2/5 | | |---------------------------------|--------------|------------------------------|------|--------|--| |---------------------------------|--------------|------------------------------|------|--------|--| Note 1: The definitions of dot defect are as below: - The defect area of the dot must be bigger than half of a dot. - For bright dot-defect, showing black pattern, the dot's brightness must be over 30% brighter than others. - For dark dot-defect, showing white pattern, the dot's brightness must be under 70% darker than others. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 12.5. - The Density of dot defect is defined in the area within diameter ϕ =20mm. ## 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | Criteria | | | Applied zone | | |-------------------|--|--|----------|-----------------------------|-----| | | Width (mm) | Length (m | m) | Maximum number | | | | W≦0.05 | - | | Ignored | | | Scratches | 0.05 <w≦0.1< td=""><td colspan="2">L≦10</td><td>4; 2-defect distance > 5 mm</td><td>A,B</td></w≦0.1<> | L≦10 | | 4; 2-defect distance > 5 mm | A,B | | | 0.1 <w≦0.15< td=""><td>L≦10</td><td></td><td>2; 2-defect distance > 5 mm</td><td></td></w≦0.15<> | L≦10 | | 2; 2-defect distance > 5 mm | | | | 0.15 <w< td=""><td>10<l< td=""><td></td><td>Not allowed</td><td></td></l<></td></w<> | 10 <l< td=""><td></td><td>Not allowed</td><td></td></l<> | | Not allowed | | | | | Round (De | ot shape | e) | | | | D≦0 | | | Ignored | | | | 0.2 <d≦0< td=""><td>).5</td><td>5;</td><td>2-defect distance > 5 mm</td><td></td></d≦0<> |).5 | 5; | 2-defect distance > 5 mm | | | | 0.5 <d< td=""><td></td><td></td><td>Not allowed</td><td></td></d<> | | | Not allowed | | | Foreign materials | | Filamentous | (Line s | hape) | A,B | | and spot | Width (mm) | Length (m | m) | Maximum number | A,b | | | W≦0.05 | L≦8 | | Ignored | | | | $0.05 < W \le 0.1$ | L≦8 | | 4; 2-defect distance > 5 mm | | | | 0.1 <w≦0.15< td=""><td colspan="2">L≦8</td><td>2; 2-defect distance > 5 mm</td><td></td></w≦0.15<> | L≦8 | | 2; 2-defect distance > 5 mm | | | | 0.15 <w< td=""><td>8<l< td=""><td></td><td>Not allowed</td><td></td></l<></td></w<> | 8 <l< td=""><td></td><td>Not allowed</td><td></td></l<> | | Not allowed | | | | | Round (De | ot shape | e) | | | | | erage diameter (mm) | | Maximum number | | | | D≦0.1 | | | Ignored | | | Stain | $0.1 < D \le 0.2$ | | 3 | ; 2-defect distance > 5 mm | A,B | | | $0.2 < D \le 0.3$ | | 2 | ; 2-defect distance > 5 mm | | | | $0.3 < D \le 0.5$ | | | 1 | | | | 0.5 <d< td=""><td></td><td></td><td>Not allowed</td><td></td></d<> | | | Not allowed | | | | | Round (Do | ot shape | e) | | | | Average diamete | er (mm) | | Maximum number | | | Bubble | D≦0.5 | | | Ignored | A,B | | Dubble | $0.5 < D \le 1.0$ | | 6 | ; 2-defect distance > 5 mm | A,b | | | 1.0 <d≦2.0< td=""><td>4:</td><td>; 2-defect distance>5 mm</td><td></td></d≦2.0<> | | 4: | ; 2-defect distance>5 mm | | | | 2.0 <d< td=""><td></td><td></td><td>Not allowed</td><td></td></d<> | | | Not allowed | | | Pin hole on | D < 0.0 | | | Ignored | - c | | inking area | 0.2 <d< td=""><td></td><td></td><td>Not allowed</td><td></td></d<> | | | Not allowed | | | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2712-TX26D200VM2BVA-3 | PAGE | 12-4/5 | | |---------------------------------|--------------|------------------------------|------|--------|--| |---------------------------------|--------------|------------------------------|------|--------|--| The limitation of glass flaw occurred on touch panel is defined in the table as below. | Item | Specifications | | Maximum number | |------------------|----------------|---|----------------| | Corner flaw | Y Y Y | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 | | | | $ \begin{array}{cccc} X & \leq & 0.1 \text{ mm} \\ Y & \leq & 0.1 \text{ mm} \\ Z & \leq & 1/2T \end{array} $ | Ignored | | Edge flaw | Z Z | $0.1 < X \le 0.3 \text{ mm}$
$0.1 < Y \le 0.3 \text{ mm}$
$Z \le 1/2T$ | 3 | | | | 0.3 mm < X
0.3 mm < Y
1/2T < Z | Not allowed | | Progressive flaw | | Not allowed | | ### 13. PRECAUTIONS #### 13.1 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.2 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it. - 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages. - 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa. If the area of #### 13.3 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. #### 13.4 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long-term storage temperature is between 10 C° ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. #### 13.5 PRECAUTIONS of TOUCH PANEL The housing should not cover the active area of touch panel. ## 14. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.14.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. Fig 14.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2020 | 0 | | 2021 | 1 | | 2022 | 2 | | 2023 | 3 | | 2024 | 4 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1∼7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | - 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. - 4) The location of the lot mark is on the back of the display shown in Fig. 14.2. Label example: Fig. 14.2