

N°: CH009

C/ Bizkargi, 6 – POL. SARRIKOLA 48195 LARRABETZU (BIZKAIA) Telf. 944 123 199 Fax. 944 117 132

Ficha técnica

Titulo	Características mecánicas de los elementos de fijación fabricados de acero inoxidable						
	resistente a la corrosión. Parte 1 Pernos, tornillos y bulones.						
Norma	ISO 3506-1						

1.- Objeto y campo de aplicación.

Esta parte de la Norma ISO 3506 especifica las características mecánicas de los pernos, tornillos y bulones de aceros inoxidables austeníticos, martensíticos y ferríticos, resistentes a la corrosión y ensayados a una temperatura ambiente comprendida entre 10 °C y 35°C. Estas características varían según que la temperatura sea más o menos elevada.

Se aplica a los pernos, tornillos y bulones:

- de diámetro nominal de rosca (d) hasta 39 mm, incluido;
- de rosca métrica ISO triangular cuyo diámetro y paso que se ajusten a las Normas ISO 68-1, ISO 261 e ISO 262;
- de cualquier forma.

Esta parte de la Norma ISO 3506 no se aplica a tornillos de características especiales, tales como la soldabilidad.

Esta parte de la Norma ISO 3506 no define la resistencia a la corrosión o a la oxidación en ambientes particulares. La Norma ISO 8044 recoge las definiciones de corrosión y de resistencia a la corrosión.

Esta parte de la Norma ISO 3506 tiene por objetivo establecer una clasificación de las clases de calidad de los elementos de fijación de acero inoxidable resistente a la corrosión. Algunos materiales pueden utilizarse a bajas temperaturas, hasta –196 °C, mientras otros pueden utilizarse a altas temperaturas, hasta 800 °C en el aire. En el anexo A se facilitan algunas informaciones sobre la influencia de la temperatura sobre las características mecánicas.

La resistencia a la corrosión y a la oxidación, así como las características mecánicas a altas temperaturas o a temperaturas por debajo de cero grados, deben ser objeto de acuerdo entre el cliente y el fabricante en cada caso.

Todos los elementos de fijación de acero inoxidable austenítico, normalmente, son no magnéticos en estado de hipertemple [estado de recocido]; después de una deformación en frío, se pueden poner de manifiesto algunas características magnéticas.

2- Designación, marcado y acabado.

2.1 Designación

El sistema de designación de las clases de calidad de los aceros inoxidables para los pernos, tornillos y bulones se ilustra en la figura 1. La designacióndel material se compone de dos grupos de caracteres separados por un guión. El primero designa el producto de clase de acero y el segundo, la clase de calidad.

La designación del producto de clase del acero (primer grupo) se compone de una de las letras siguientes:

A para los aceros austeníticos;

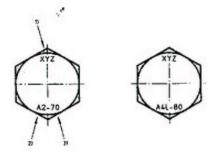
C para los aceros martensíticos;

F para los aceros ferríticos.

Que designa el grupo de acero y una cifra que designa la composición química dentro del grupo del acero.

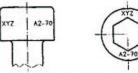
La designación de la clase de calidad (segundo grupo) consiste en dos cifras que indican 1/10 de la resistencia a la tracción del elemento de fijación.

Revisión: 2.0 1 de 7 01/12/2022

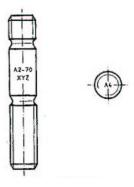


2.2 Marcado

Las piezas deben marcarse y/o describirse con el sistema de designación descrito en el apartado 2.1, sólo si cumplen con todas las condiciones establecidas en esta parte de la Norma ISO 3506.


2.2.1 Pernos y tornillos. Todos los pernos, tornillos de cabeza hexagonal y los de cabeza cilíndrica con hueco hexagonalo con seis lóbulos internos de diámetro nominal de rosca $d \ge 5$ mm, deben marcarse claramente según se indica en el apartado 2.1 y en las figuras 1 y 2. El marcado debe incluir el producto de clase y la clase de calidad del acero así como la marca de identificación del fabricante. Los demás pernos y tornillos pueden marcarse de igual manera, en la medida de lo posible y, solamente, en la cabeza. Se autorizan otras marcas complementarias, siempre que no induzcan a confusión.

2.2.2. Bulones. Los bulones de diámetro nominal de rosca $d \ge 6$ mm deben marcarse claramente según se indica en el apartado 2.1 y en las figuras 1 y 2. El marcado debe localizarse en la parte no roscada del bulón y debe incluir la marca de identificación del fabricante, el producto de clase y la clase de calidad de acero. Si fuera imposible que la marca se limite a la parte no roscada, sólo puede marcarse en el final de la parte roscada del bulón el producto clase de acero (véase la figura 2).



- 1) Marca de identificación del fabricante
- 2) Producto de clase
- 3) Clase de calidad

Marcado de pernos y tornillos de cabeza hexagonal

Marcado de pernos y tornillos de cabeza cilíndrica con hueco hexagonal y de seis lóbulos (formas alternativas)

Marcado de bulones (para otras posibilidades, véase el apartado 2.2.2)

NOTA – El marcado para las roscas a izquierdas se describe en la Norma ISO 898-1

Fig. 2 - Marcado de pernos, tornillos y bulones

Revisión: 2.0 2 de 7 01/12/2022

- 2.2.3 Empaquetado. Es obligatorio que todos los paquetes de cualquier dimensión estén marcados con la designación y con la marca comercial del fabricante.
- 2.3. Acabado. Salvo indicación en contrario, los elementos de fijación que respondan a los requisitos de esta parte de la Norma ISO 3506, deben suministrarse limpios y brillantes. Se recomienda una pasivación para una mayor resistencia a la corrosión.

3- Composición química.

La composición química de los aceros inoxidables de los elementos de fijación que respondan a los requisitos de esta parte de la Norma ISO 3506 se recoge en la tabla 1.

Salvo acuerdo previo en contrario entre el comprador y el fabricante, la elección definitiva de la composición química para el producto de clase de acero se deja a criterio del fabricante.

Para aquellas aplicaciones que presenten un riesgo de corrosión intergranular, se recomienda realizar el ensayo descrito en la Norma ISO 3651-4 o en la Norma ISO 3651-2. En estos casos, se aconsejan los aceros estabilizados A3 y A5 o los aceros inoxidables A2 y A4 con contenidos en carbono que no excedan de 0,03%.

Tabla 1

Productos de clase de acero inoxidable. Composición química

Grupo	Producto	Composición química ^{a)} % (m/m) ^{b)}							Notas		
	de clase	С	Si	Mn	Р	S	Cr	Мо	Ni	Cu	Notas
Austenítico	A1	0,12	1	6,5	0,02	0,15-0,35	16 a 19	0,7	5 a 10	1,75 a 2,25	c) d) e)
	A2	0,1	1	2	0,05	0,03	15 a 20	_f)	8 a 19	4	g) h)
	A3	0,08	1	2	0,045	0,03	17 a 19	_f)	9 a 12	1	5C≤Ti≤0,80 y/o
											10C≤Nb≤1,00
	A4	0,08	1	2	0,045	0,03	16 a 18,5	2 a 3	10 a 15	4	h) i)
	A5	0,08	1	2	0,045	0,03	16 a 18,5	2 a 3	10,5 a 14	1	5C≤Ti≤0,80 y/o
											10C≤Nb≤1,00 ⁱ⁾
Martensítico	C1	0,09 a 0,15	1	1	0,05	0,03	11,5 a 14		1		i)
	C3	0,17 a 0,25	1	1	0,04	0,03	16 a 18		1,5 a 2,5		
	C4	0,08 a 0,15	1	1,5	0,06	0,15-0,35	12 a 14	0,6	1		c) i)
Ferrítico	F1	0,08	1	1	0,04	0,03	15 a 18	_f)	1		j)

a) De acuerdo al estándar del material, los valores máximos si no se indica otra cosa son de acuerdo a EN 10088.

Revisión: 2.0 3 de 7 01/12/2022

b) En caso de disputa, aplica análisis de producto.

c) El Selenio puede usarse para sustituir al sulfuro, sin embargo se aplican restricciones a su uso.

d) Si el contenido de níquel es inferior al 8% el mínimo de manganeso debe ser 5%.

e) No hay mínimo para el contenido de cobre si contenido de níquel es mayor que 8%

f) La cantidad de molibdeno será a elección del fabricante. En caso de ser esencial su contenido será indicado por el comprador.

g) Si el contenido de cromo es inferior a 17% el contenido mínimo de níquel debe ser 12%.

h) Para aceros austeníticos con máximo de carbono de 0,03%, el nitrógeno no podrá exceder el 0,22%.

i) A elección del fabricante el contenido de carbono podrá aumentarse tanto como sea necesario para obtener las propiedades mecánicas en grandes diámetros, pero no podrá exceder de 0,12% en aceros austeníticos.

j) Se incluirá titanio y/o niobio para mejorar la resistencia a la corrosión.

4- Características mecánicas.

Las características mecánicas de los pernos, tornillos y bulones que se ajusten a esta parte de la Norma ISO 3506 deben estar conformes con los valores dados en las tablas 1.2.

Para los pernos y tornillos de acero martensítico, la resistencia a la tracción con cargas de cuña no debe ser menor que los valores mínimos de resistencia a la tracción dados en la tabla 2.

A efectos de aceptación, se aplican las características mecánicas especificadas en este capítulo y deben ensayarse de acurdo con los programas de ensayo descritos en el capítulo 5.

5- Ensayos.

5.1 Programa de ensayos

Los ensayos que han de realizarse dependen del producto de clase de acero y de la longitud del tornillo o del bulón y se indican en la tabla 5.

5.2 Métodos de ensayo

5.2.1 Generalidades. La precisión de la medida de toas las longitudes debe ser igual o superior a \pm 0,05 mm.

Todos los ensayos de resistencia a la tracción y de carga deben realizarse sobre máquinas de ensayo con mordazas de alineación automática para evitar cualquier esfuerzo no axial (véase figura 3). Para realizar los ensayos conforme a los apartados 5.2.2 a 5.2.4, el adaptador inferior debe estar templado y roscado. Su dureza debe ser de 45 HRC como mínimo. La tolerancia interna de la rosca debe ser igual a 5H6G.

Tabla 2

Características mecánicas de pernos, tornillos y bulones. Aceros austeníticos

Grupo	Producto de clase	Clase de calidad	Resistencia a la tracción Rm¹) mín. N/mm²	Límite elástico Convencional al 2% R _{p0,2} 1) mín. N/mm2	Alargamiento de rotura A ²⁾ mín. mm
	A1, A2,	50	500	210	0,6 <i>d</i>
	A3	70	700	450	0,4 d
Austenítico		80	800	600	0,3 d
	A4	50	500	210	0,6 d
	A5	70	700	450	0,4 d
		80	800	600	0,3 d
		100	1000	800	0,2 d

¹⁾ La resistencia a la tracción se calcula en función de la sección resistente (véase el anexo A).

Revisión: 2.0 4 de 7 01/12/2022

²⁾ Se determina según se indica en el apartado 5.2.4 sobre la longitud real del tornillo y no sobre la probeta preparada; d es el diámetro nominal de rosca.

³⁾ Las características mecánicas de los elementos de fijación de diámetro nominal de rosca d > 24 mm deben ser objeto de acuerdo entre el cliente y el fabricante y marcadas con el producto de clase y clase de calidad indicados en esta tabla.

Tabla 2

Características mecánicas de pernos, tornillos y bulones. Aceros martensíticos y ferríticos

Grupo	Producto de clase	Clase de	Carga de rotura Rm ¹⁾ mín.	Límite elástico Convencional Al 0,2% R _{p0,2} mín.	Alargamiento de rotura A²) mín.	Dureza		
			N/mm²	N/mm²	mm	НВ	HRC	HV
		50	500	250	0,2 d	147 a 209		155 a 220
	C1	70	700	410	0,2 d	209 a 314	20 a 34	220 a 330
Martensítico		110 ³⁾	1100	820	0,2 <i>d</i>		36 a 45	350 a 440
	C3	80	800	640	0,2 d	228 a 323	21 a 35	240 a 340
	C4	50	500	250	0,2 <i>d</i>	147 a 209	-	155 a 220
		70	700	410	0,2 d	209 a 314	20 a 34	220 a 330
Ferrítico	F1 ⁴⁾	45	450	250	0,2 <i>d</i>	128 a 209		135 a 220
		60	600	410	0,2 d	171 a 271		180 a 285

¹⁾ La resistencia a la tracción se calcula sobre la sección resistencia (Véase anexo A).

Tabla 8 $Par de \ rotura \ mínimo, \ M_{B \ min.} \ para \ pernos de acero austenítico y tornillos M1,6 a M16 }$ (rosca de paso grueso)

Rosca	P	ar de rotura mínimo, M _{B mín.} Nm Clase de calidad	
110000	50	70	80
M1,6	0,15	0,2	0,24
M2	0,3	0,4	0,48
M2,5	0,6	0,9	0,96
М3	1,1	1,6	1,8
M4	2,7	3,8	4,3
M5	5,5	7,8	8,8
M6	9,3	13	15
M8	23	32	37
M10	46	65	74
M12	80	110	130
M16	210	290	330

Los valores mínimos de par de rotura de los elementos de fijación de aceros martensíticos y ferríticos deben ser objeto de acuerdo entre el cliente y el fabricante.

Revisión: 2.0 5 de 7 01/12/2022

 $^{^{3)}}$ Templado y revenido a una temperatura mínima de 275 $^{\rm o}{\rm C}.$

 $^{^{4)}}$ Diámetro nominal de la rosca d ≤ 24 mm.

Tabla 9
Programa de ensayos

Producto de clase	Resistencia a la tracción ¹⁾	Par de rotura ²⁾	Límite elástico convencional a0,2%, R _{p 0,2} 1)	Alargamiento de rotura ¹⁾	Dureza	Ensayo de carga con cuñas
A1	l≥2,5 d³)	I<2,5 d	l≥2,5 <i>d</i> ³⁾	l≥2,5 <i>d</i> ³⁾		
A2	l≥2,5 d³)	I<2,5 d	l≥2,5 d³)	l≥2,5 <i>d</i> ³⁾		
А3	l≥2,5 <i>d</i> ³⁾	I<2,5 d	l≥2,5 d³)	l≥2,5 <i>d</i> ³⁾		
A4	l≥2,5 <i>d</i> ³⁾	I<2,5 d	l≥2,5 d³)	l≥2,5 <i>d</i> ³⁾		
A5	l≥2,5 <i>d</i> ³⁾	I<2,5 d	l≥2,5 <i>d</i> ³)	l≥2,5 <i>d</i> ³⁾		
C1	l≥2,5 d ³⁾		l≥2,5 <i>d</i> ³⁾	l≥2,5 <i>d</i> ³⁾	Requerida	l _s ≥2d
C3	l≥2,5 d ³⁾		l≥2,5 <i>d</i> ³⁾	l≥2,5 <i>d</i> ³⁾	Requerida	l₅≥2d
C4	l≥2,5 d³)		l≥2,5 <i>d</i> ³⁾	l≥2,5 <i>d</i> ³⁾	Requerida	l _s ≥2d
F1	l≥2,5 d³)		l≥2,5 d ³)	l≥2,5 d³)	Requerida	l _s ≥2d

- I es la longitud del perno.
- d es el diámetro nominal de la rosca.
- I_s es la longitud de la parte no roscada.
- 1) Para medidas ≥M5.
- 2) Para medidas <M5, el ensayo se aplica a todas las longitudes.
- 3) Para los bulones, el requisito es l≥3,5d.

Revisión: 2.0 6 de 7 01/12/2022

ANEXO A (Informativo)

CARACTERÍSTICAS MECANICAS A ALTAS TEMPERATURAS; APLICACIÓN A BAJAS TEMPERATURAS

NOTA – Si los pernos, tornillos y bulones se calculan correctamente, las tuercas correspondientes satisfarán automáticamente los requisitos. Sin embargo, en aplicaciones a altas y bajas temperaturas, basta considerar las características mecánicas de los pernos, tornillos y bulones.

A.1 Límite inferior de fluencia o límite elástico convencional al 0,2% a temperaturas elevadas

Los valores dados en este anexo son orientativos. Los usuarios deberían comprender que debido a la química actual, las cargas a que están sometidos los elementos de fijación y el medio pueden sufrir variaciones significativas. El usuario debería consultar al fabricante si las cargas fluctúan y los períodos de funcionamiento a altas temperaturas son importantes o sí la posibilidad de que aumente la corrosión es importante.

En la tabla A.1 se recogen los porcentajes de variación del límite inferior de fluencia (R_{eL}) y del límite elástico convencional (R_{p0,2}), a altas temperaturas respecto a estos límites elásticos a temperatura ambiente.

Tabla A.2 – Influencia de la temperatura sobre R_{pf}

Producto de clase	R_{pf}							
de acero	% Temperatura							
	+ 100 °C	+ 200 °C	+ 300 °C	+ 400 °C				
A2 A4	85	80	75	70				
C1	95	90	80	65				
C3	90	85	80	60				

Revisión: 2.0 7 de 7 01/12/2022