

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1024768ATZQW-30
APPROVED BY	
DATE	

□ Approved For Specifications

□ Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2018/03/01		New Release	Raymond

2

1.0 General Descriptions

1.1 Introduction

AM-1024768ATZQW-30 is a 15.0" TFT Liquid Crystal Display IAV module with LED Backlight units and 20 pins LVDS interface. This module supports 1024 x 768 XGA mode and can display 16.2M/262k colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 15.0" XGA LCD panel and the LED driving device for Backlight is built in PCBA.

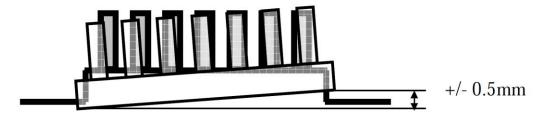
1.2 Features

- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 Application

- -TFT LCD Monitor
- Factory Application
- Amusement
- Vehicle

1.4 General specifications

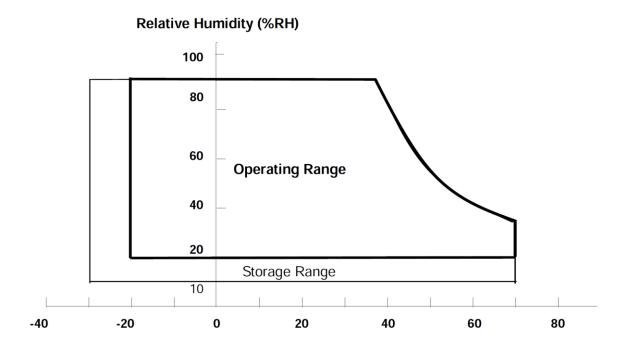

Items	Specifications	Unit	Note
Active Area	304.1 (H) x 228.1(V) (15.0" diagonal)	mm	
Bezel Opening Area	307.4(H) x 231.3(V)	mm	
Driver Element	a-Si TFT active matrix	-	
Pixel Number	1024 x R.G.B x 768	Pixel	
Pixel Pitch	0.297(H) x 0.297(W)	mm	
Pixel Arrangement	RGB vertical Stripe		
Display Colors	16.2M / 262K	Color	
Display Mode	Normally Black	-	
Surface Treatment	Hard Coating (3H), Anti-Glare	-	

1.5 Mechanical specifications

Item		Min.	Тур.	Max	Unit	Note
	Horizontal(H)	326	326.5	327	mm	(1)
Module Size	Vertical(V)	253	253.5	254	mm	(1)(2)
	Depth(D)	8.6	9.1	9.6	mm	
Bezel Area	Horizontal	307.1	307.4	307.7	mm	
Dezei Alea	Vertical	231	231.3	231.6	mm	
Active Area	Horizontal	-	304.1	-	mm	
Active Area	Vertical	-	-	-	mm	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) The depth is without connector.


2.0 Absolute Maximum Ratings

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Min	Max	Unit	Note
Operating Ambient Temperature	Top	-20	+70	$^{\circ}\!\mathbb{C}$	(1)(2)(3)
Storage Temperature	T _{ST}	-30	+70	$^{\circ}\!\mathbb{C}$	(1)(2)(3)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (2) 90 %RH Max. (Ta < 40°C).
- (3) Wet-bulb temperature should be 39°C Max.

2.2 ELECTRICAL ABSOLUTE RATINGS

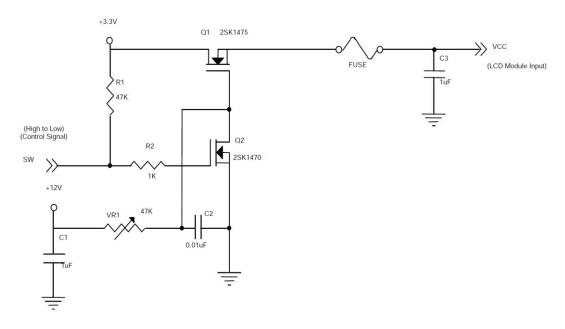
2.2.1 TFT LCD MODULE

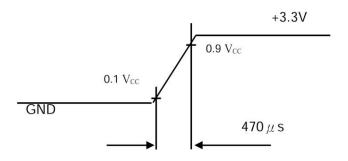
Item	Symbol	Min	Max	Unit	Note
Power Supply Voltage	Vcc	-0.3	4	V	(1)

Temperature (°C)

Item	Symbol	Min	Max	Unit	Note
Converter Voltage	Vi	-0.3	18	V	(1)(2)
Enable Voltage	EN	-	5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for lamp (Refer to 3.2 for further information).


3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

Itom		Symbol		Value		Unit	Note
Item		Symbol	Min.	Тур.	Max	Offic	Note
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RIP}	ı	-	100	mVp-p	(2)
Rush Current		I _{RUSH}	ı	-	2.0	Α	(3)a
Power Supply Current	White	Lan	ı	800	960	mA	(3)b
Fower Supply Current	Black	Icc	ı	670	800	mA	
LVDS differential input voltage	е	V_{id}	200	-	600	mV	
LVDS common input voltage		Vic	1.0	1.2	1.4	V	
Differential Input Voltage for	"H" level	V _{IH}	-	-	100	mV	
LVDS Receiver Threshold	VIL	-100	-		mV		
Terminating Resistor		R⊤		100		ohm	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

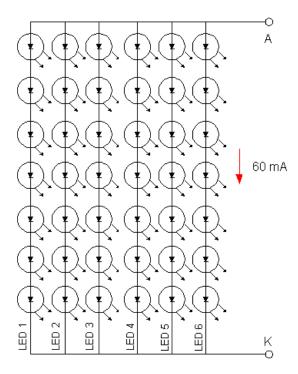
Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 ± 2 °C, DC Current and f_{V} = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

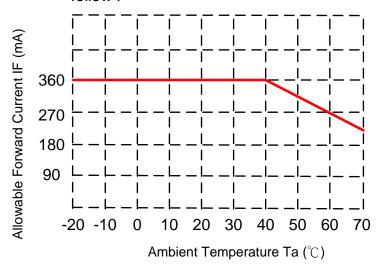
Active Area

b. Black Pattern

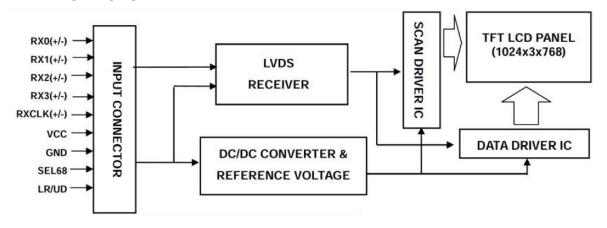
Active Area


7

3.2 BACKLIGHT UNIT


ITEM	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
LED Backlight Voltage	V_{BL}		24.5		V	For reference
LED Backlight Current	I _{BL}	-	360		mA	Ta=25°C
LED Life Time			50K	-	KHr	Note*

Note* : Brightness to be decreased to 50% of the initial value. Ta= 25° C

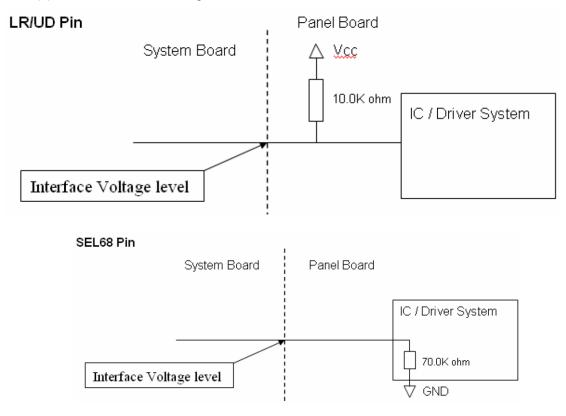


When LCM is operated over 40°C ambient temperature, the ILED should be follow :

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT


5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power Supply +3.3V(typical)		
2	VCC	Power Supply +3.3V(typical)		
3	NC	No Connection (Reserve for INX test)		
4	LR/UD	Reverse Scan Control, High level or NC = Normal Mode.		
	LIVOD	Level = Horizontal/ Vertical Reverse Scan.		
5	RX0-	LVDS Differential Data Input	Negative	
6	RX0+	LVDS Differential Data Input	Positive	
7	GND	GND		
8	RX1-	LVDS Differential Data Input	Negative	
9	RX1+	LVDS Differential Data Input	Positive	
10	NC	No Connection (Reserve for INX test)		
11	RX2-	LVDS Differential Clock Input	Negative	
12	RX2+	LVDS Differential Clock Input	Positive	
13	GND	GND		
14	RXCLK-	LVDS Differential Data Input	Negative	
15	RXCLK+	LVDS Differential Data Input	Positive	
16	GND	GND		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	NC	No Connection (Reserve for INX test)		
20	SEL68	LVDS 6/8 bit select function control, High level: 6bit Input Mode. Low level or NC: 8bit Input Mode.		Note(3)

Note (1) Connector Part No.: Cvilux CID520D1HR0-NH or equivalent.

Note (2) User's connector Part No.: Hirose DF14-20S-1.25C or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

5.3 COLOR DATA INPUT ASSIGNMENT

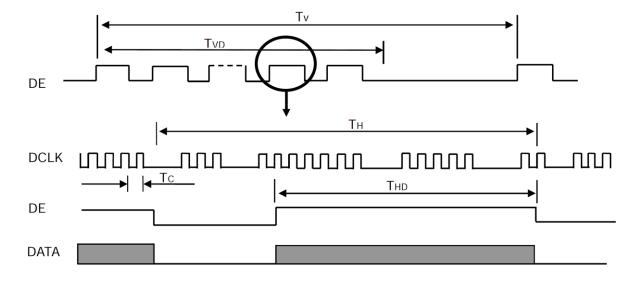
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal										
	Color				Re								Gre								Bl				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

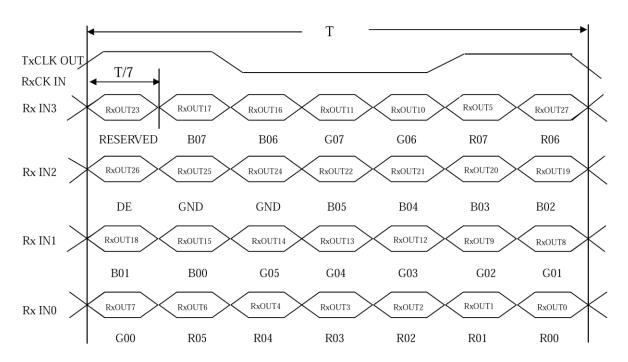
Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

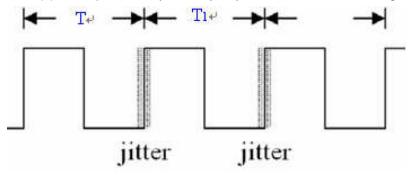
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

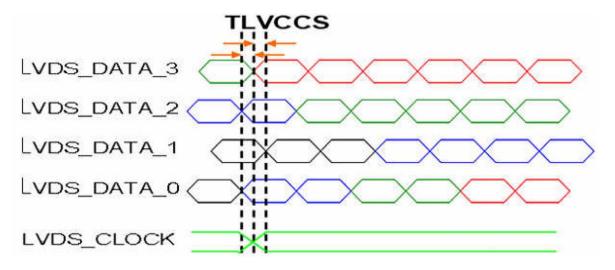

The input signal timing specifications are shown as the following table and timing diagram.

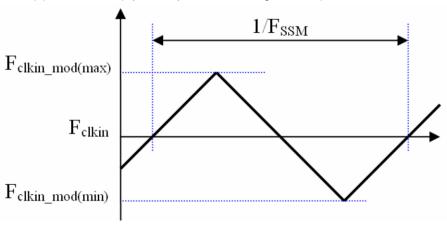
Signal	Item	Symbol	Min	Min	Max	Unit	Note	
LVDS Clock	Frequency	Fc	53.35	65	80	MHz		
	Period	Tc	12.5	15.38	18.75	Ns		
	Input cycle to cycle jitter	T _{rcl}	ı	-	200	Ns	(a)	
	Input Clock to data skew	TLVDS	02*Tc	-	0.02*Tc	Ps	(b)	
	Spread spectrum modulation range	F _{clkin_mod}	ı	ı	1.02*Fc	MHz	(C)	
	Spread spectrum modulation frequency	F _{SSM}	ı	ı	200	KHz		
Vertical Display Term	Frame Rate	Fr	55	60	70	Hz	Tv=Tvd+Tvb	
	Total	T _v	780	806	840	Th	-	
	Active Display	T_{vd}	768	768	768	Th	-	
	Blank	T _{vb}	Tv-Tvd	38	Tv-Tvd	Th	-	
Horizontal Display Term	Total	Th	1240	1344	1360	Tc	Th=Thd+Thb	
	Active Display	T _{hd}	1024	1024	1024	Tc	-	
	Blank	T _{hb}	Th-Thd	320	Th-Thd	Tc	-	


Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

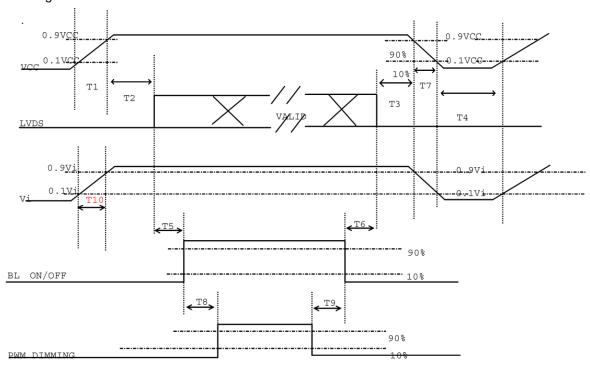
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


TIMING DIAGRAM of LVDS


Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$

Note (b) Input Clock to data skew is defined as below figures.



Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Units			
Parameter	Min	Тур	Max	Units	
T1	0.5	-	10	ms	
T2	0	-	50	ms	
Т3	0	-	50	ms	
Т4	500	-	-	ms	
Т5	200	-	-	ms	
Т6	200	-	-	ms	
Т7	5	-	300	ms	
Т8	10	-	-	ms	
Т9	10	-	-	ms	
T10	20		50	ms	

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.2 Reverse Scan

15

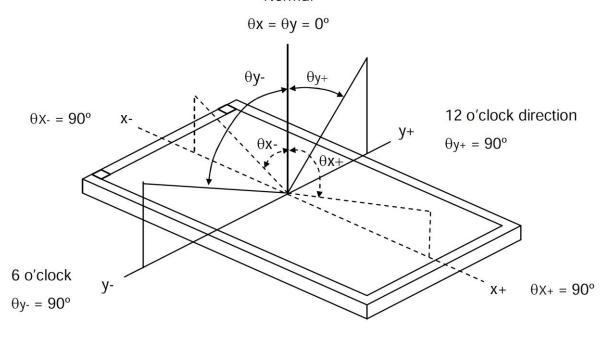
Fig. 1 Normal scan (pin 4, LR/UD = High or NC)

Fig. 2 Reverse scan (pin 4, LR/UD = Low)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Value	Unit	
Ambient Temperature (Ta)	25±2	°C	
Ambient Humidity (Ha)	50±2	%RH	
Supply Voltage	According to typical value in "ELECTRICAL		
Input Signal	CHARACTE		
LED Light Bar Input Current Per Input Pin	CHARACTERISTICS		


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Color	Red	Rx Ry			TBD TBD		-	(1),(5)
	Green	Gx	θx=θy=0° BM-7/		TBD			
		Gy			TBD			
Chromaticity	Blue	Bx			TBD			
		Ву			TBD			
	White	Wx	CS-1000T		TBD			
	VVIIIC	Wy			TBD			
Center Luminar	ice of White	LC		400	500		cd/m ²	(4),(5)
Contrast Ratio	Contrast Ratio			1300	2000		-	(2),(5)
Dannana Tima			$\theta_X = \theta_Y = 0$	-	16	21		(0)
Response Time		TF	0X=0Y=0	-	7	14	ms	(3)
White Variation	White Variation		$\theta_X = \theta_Y = 0$	ı	1.25	1.33	-	(5),(6)
	Horizontal	θ _{X+}	- CR≧10	80	88	ı	Deg.	
Viewing Angle		Өх-		80	88	ı		(1),(5)
	Vertical	θ _{Y+}		80	88	-		
		θ _Y -		80	88	-		

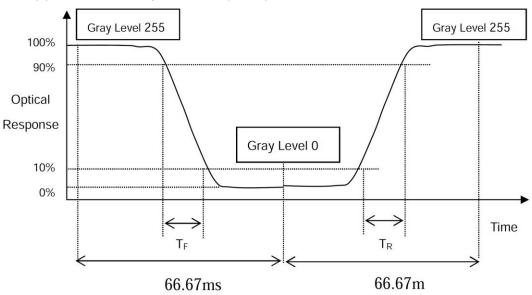
Note (1) Definition of Viewing Angle (θ_X, θ_Y) :

Normal

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

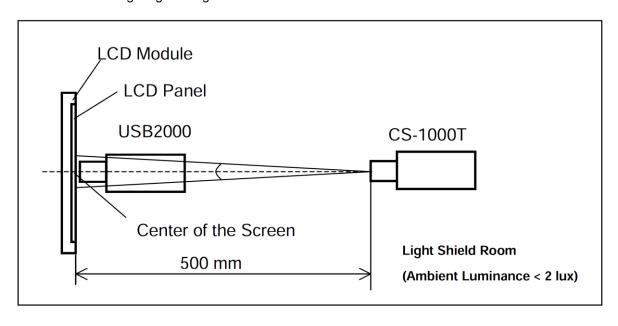
L0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (TR, TF):

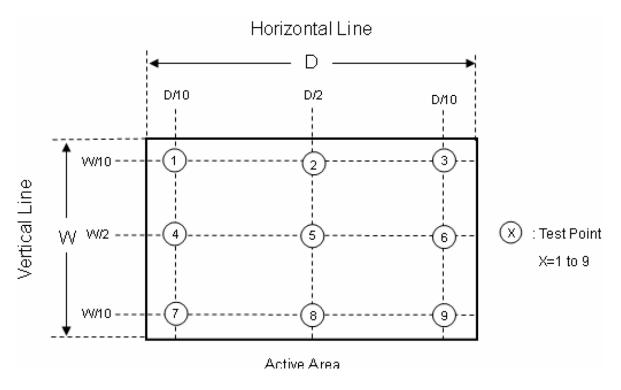
Note (4) Definition of Luminance of White (Lc):


Measure the luminance of gray level 255 at center point

Lc = L(5)

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 (255) at 9 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)]}}$$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note	
High Temperature Storage Test	70°C, 240 hours		
Low Temperature Storage Test	-30°C, 240 hours	(1),(2),(3),(4)	
Thermal Shock Storage Test	-30°C, 0.5 hour←→70°C, 0.5 hour; 100cycles, 1 hour/cycle)		
High Temperature Operation Test	70°C, 240 hours		
Low Temperature Operation Test	-20°C, 240 hours		
High Temperature & High Humidity Operation Test	60°C, RH 90%, 240 hours	(1),(2),(3),(5)	

Note (1) There should be no condensation on the surface of panel during test.

Note (2) Temperature of panel display surface area should be 73°C Max.

Note (3) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.

Note (4) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9 USE PRECAUTIONS

9.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

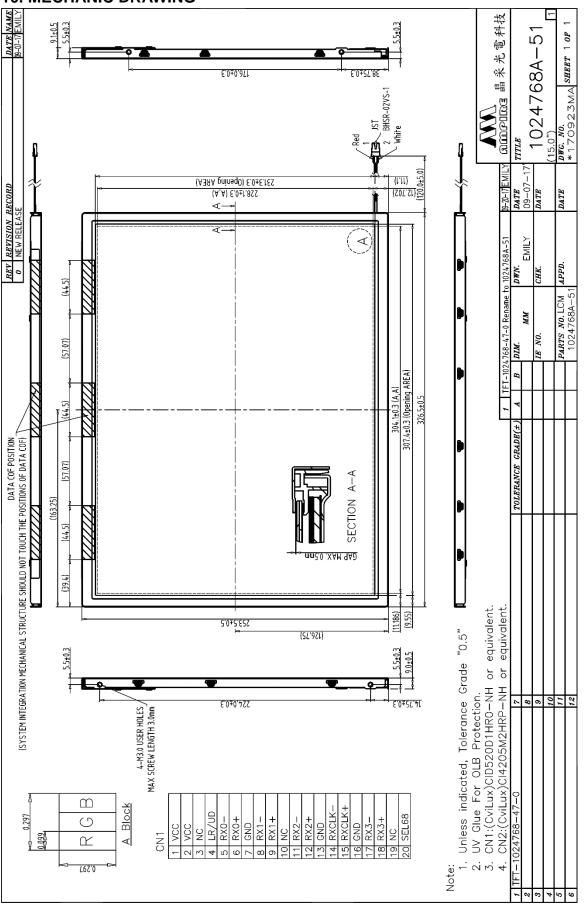
9.2 Installing precautions

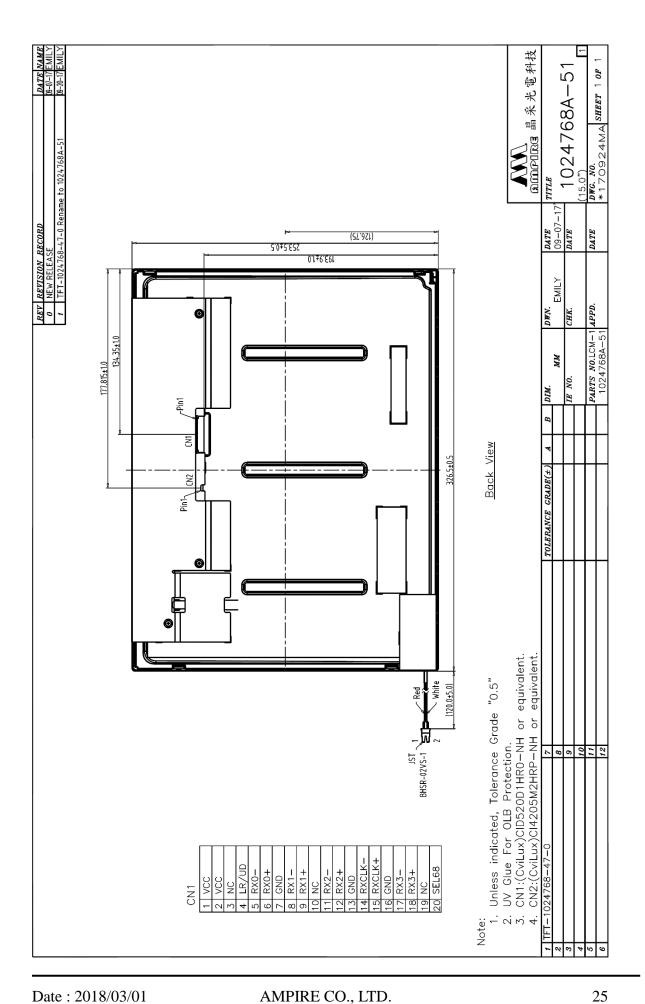
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

9.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

9.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.


- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10. MECHANIC DRAWING

