

# 晶采光電科技股份有限公司 AMPIRE CO., LTD.



# SPECIFICATIONS FOR LCD MODULE

| CUSTOMER          |                         |
|-------------------|-------------------------|
| CUSTOMER PART NO. |                         |
| AMPIRE PART NO.   | AMA-050A02-DI2117A-G020 |
| APPROVED BY       |                         |
| DATE              |                         |

■Approved For Specifications

□ Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

**22181** 新北市 汐止區 新台五路一段 **116** 號 **4** 樓(東方科學園區 D 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

| APPROVED BY | CHECKED BY | ORGANIZED BY |
|-------------|------------|--------------|
| Parto       | Kokon      | Canal        |

Date : 2018/2/7 AMPIRE CO., LTD.

# RECORD OF REVISION

| Revision<br>Date | Page | Contents    | Editor |
|------------------|------|-------------|--------|
| 2018/2/7         | -    | New Release | Emil   |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |
|                  |      |             |        |

# 1. FEATURES

5 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 5" TFT-LCD panel, backlight unit, PCAP and 2mm cover glass.

- 1. Construction: a-Si TFT-LCD with driving system, White LED Backlight
- 2. LCD type: Transmissive, Normally White
- 3. Number of the Colors: 16.7M colors (R,G,B 8bit digital each)
- 4. Interface: 24 Bit TTL RGB interface 45 pin.
- 5. LCD Power Supply Voltage: 3.3V single power input, built-in power supply circuit.
- 6. ROHS compliant.

Date: 2018/2/7

7. PACP with IIC interface touch panel controller.

# 2. PHYSICAL SPECIFICATIONS

Date: 2018/2/7

| Item                            | Specifications            | unit |
|---------------------------------|---------------------------|------|
| Display size (diagonal)         | 5.0                       | inch |
| Resolution                      | 800 (W) x RGB x 480 (H)   | dot  |
| Active area                     | 108.0 (W) x64.8 (H)       | mm   |
| Pixel pitch                     | 0.135 (W) x 0.135 (H)     | mm   |
| Color configuration             | R.G.B Vertical stripe     |      |
| Surface treatment               | Without surface treatment |      |
| View Direction (Gray Inversion) | 6 o'clock                 |      |

4

# 3. ABSOLUTE MAXIMUM RATINGS

# 3.1. Electrical Absolute max. ratings

| Item          | Symbol   | Condition | Min. | Max.                 | Unit | Remark |
|---------------|----------|-----------|------|----------------------|------|--------|
| Power voltage | $V_{CC}$ | GND=0     | -0.3 | 5.0                  | V    |        |
| Input voltage | $V_{in}$ |           | -0.3 | V <sub>CC</sub> +0.3 | V    | Note 1 |

Note1:HD, VD, DENA, DCLK, R0~R7, G0~G7, B0~B7

# 3.2 Environmental Absolute max. ratings

| Item          | OPERATING |          | STORA  | AGE      | Remark          |  |
|---------------|-----------|----------|--------|----------|-----------------|--|
| iteiii        | MIN       | MAX      | MIN    | MAX      | Remark          |  |
| Temperature   | -20       | 70       | -30    | 80       | Note2,3,4,5,6,7 |  |
| Humidity      | Note1     |          | Note1  |          |                 |  |
| Corrosive Gas | Not Acc   | ceptable | Not Ac | ceptable |                 |  |

Note1 : Ambient temperature Ta <= 40° ∴ : 85% RH max

Ta >  $40^{\circ}$ C: Absolute humidity must be lower than the humidity of 85%RH at  $40^{\circ}$ C

Note2 : For storage condition Ta at  $-30^{\circ}$ C < 48h , at  $85^{\circ}$ C < 100h

For operating condition Ta at -30°C < 100h

Note3: Background color changes slightly depending on ambient temperature.

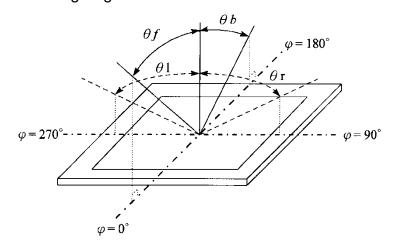
This phenomenon is reversible.

Date: 2018/2/7

Note4: The response time will be slower at low temperature.

Note5 : Only operation is guaranteed at operating temperature. Contrast, response time, another display quality are evaluated at +25 $^{\circ}$ C

Note6 : When LCM panel is operated over  $60^{\circ}$ C (center of the panel surface temperature), the IF of the LED back-light should be adjusted to 180mA


Note7: This is center of the panel surface temperature, not ambient temperature.

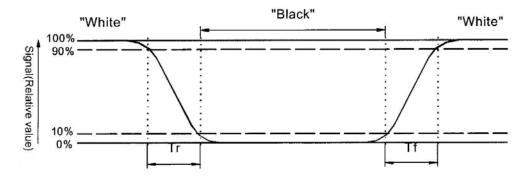
# 4. OPTICAL CHARACTERISTICS

| Item                 |          | Symbol         | Condition           | Min.         | Тур.         | Max. | Unit  | Note      |
|----------------------|----------|----------------|---------------------|--------------|--------------|------|-------|-----------|
|                      | Front    | θf             |                     | 60           | 70           |      |       |           |
| Viewing              | Back     | θЬ             | CR≧10               | 50           | 60           |      | doa   | (4)(2)(2) |
| Angle                | Left     | θΙ             |                     | 56           | 75           |      | deg.  | (1)(2)(3) |
|                      | Right    | θr             |                     | 65           | 75           |      |       |           |
| Contrast ratio       |          | CR             | Θ=Φ=0°              | 480          | 600          |      |       | (1)(3)    |
| Posnonso Time        | 2        | T <sub>r</sub> | Θ=Φ=0°              | -            | 2            | 4    | ms    | (1)(4)    |
| Response Time        |          | T <sub>f</sub> | $\Theta = \Psi = 0$ | -            | 6            | 12   | ms    | (1)(4)    |
|                      | Red      | Rx             |                     | 0.626+/-0.15 |              |      |       | (1)       |
|                      | Neu      | Ry             |                     | 0.346+/-0.15 |              |      |       |           |
|                      | Green    | Gx             |                     | 0.           | 0.322+/-0.15 |      |       |           |
| Color                |          | Gy             | Θ=Φ=0°              | 0.552+/-0.15 |              |      |       |           |
| chromaticity         | Blue     | Вх             | Θ-Ψ-0               | 0.149+/-0.15 |              |      |       |           |
|                      | blue     | Ву             |                     | 0.           | 0.183+/-0.15 |      |       |           |
|                      | White    | Wx             |                     | 0.310+/-0.15 |              |      | 1     |           |
|                      | vviile   | Wy             |                     | 0.           | 0.349+/-0.15 |      |       |           |
| Luminan<br>(ILED=240 |          | L              | Θ=Φ=0°              | 680          | 850          |      | cd/m² | (1)(5)    |
| Luminance Un         | iformity | ΔL             | Θ=Φ=0°              | 70           | -            | -    | %     | (1)(5)(6) |

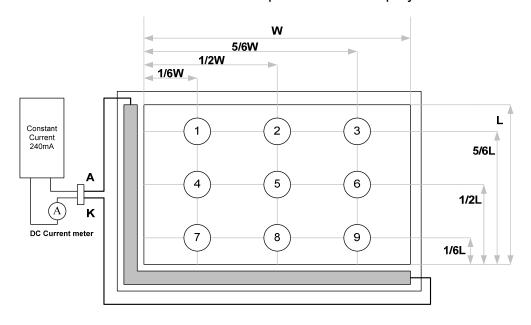
Note 1: Ta=25°C. To be measured on the center area of panel after 10 minutes operation. LED Back-light IF=240mA.

Note 2: Definition of Viewing Angle




#### Note 3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.


Contrast ratio(CR)= Photo detector output when LCD is at "White" state
Photo detector Output when LCD is at "Black" state

# Note 4: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time) respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.



Note 5: Luminance is measured at point 5 of the display.



Note 6: Definition of Luminance Uniformity

Date: 2018/2/7

 $\Delta L = [L(min.) \text{ of 9 points } / L(max.) \text{ of 9 points}] X 100\%$ 

# 5. ELECTRICAL CHARACTERISTICS

# 5.1 LCD driving

| Item                 | Symbol  | Min.            | Тур.    | Max. | Unit    | Note     |     |
|----------------------|---------|-----------------|---------|------|---------|----------|-----|
| Power supply voltage |         | VCC             | 3.0     | 3.3  | 3.6     | <b>V</b> |     |
| Input voltage for    | H Level | V <sub>IH</sub> | 0.7 VCC |      | VCC     | V        | (1) |
| logic                | L Level | V <sub>IL</sub> | 0       |      | 0.3 VCC | V        | (1) |
| Power Supply current |         | ICC             |         | 106  |         | mA       | (2) |

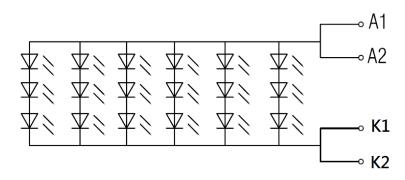
Note 1: HD, VD, DENA, DCLK, R0~R7, G0~G7, B0~B7, DISP

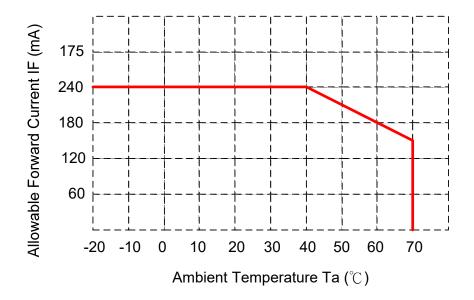
Note 2: fV =60Hz , Ta=25°C , Display pattern : All Black

\*:Will be reference only

# 5.2 Electrical characteristic of LED Back-light

| Item                | Symbol | Min. | Тур.   | Max. | Unit | Note                               |
|---------------------|--------|------|--------|------|------|------------------------------------|
| LED Forward Current | IF     | 1    | 240    | 1    | mA   | Ta=25℃ ,<br>A1+A2 total<br>current |
| LED Forward Voltage | VF     | 7.8  | 9.0    | 10.5 | V    | IF=240mA,<br>Ta=25°ℂ               |
| LED life time       |        |      | 50,000 | -    | Hr   | IF=240mA,<br>Ta=25°ℂ               |


Note 1: Ta means ambient temperature of TFT-LCD module.

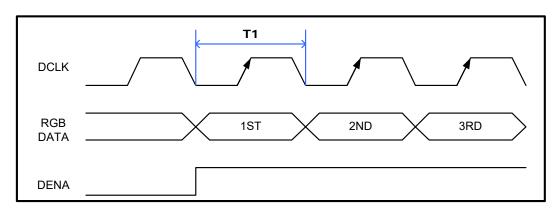

Note 2: If the module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

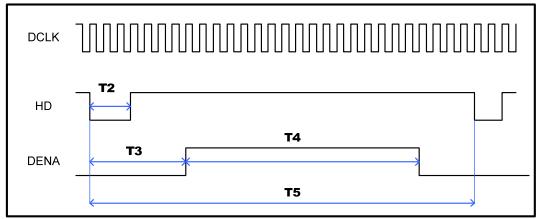
Note 3: The constant current source is needed for LED back-light driving.

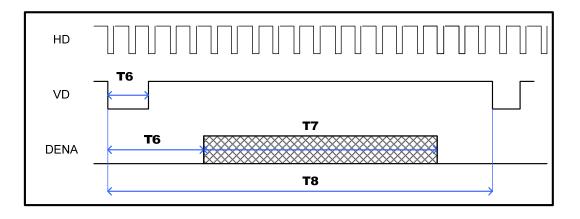
Note 4: Operating life means brightness goes down to 50% minimum brightness. LED life time is estimated data. Ta= $25^{\circ}$ C

Note 5: the structure of LED B/L shows as below.



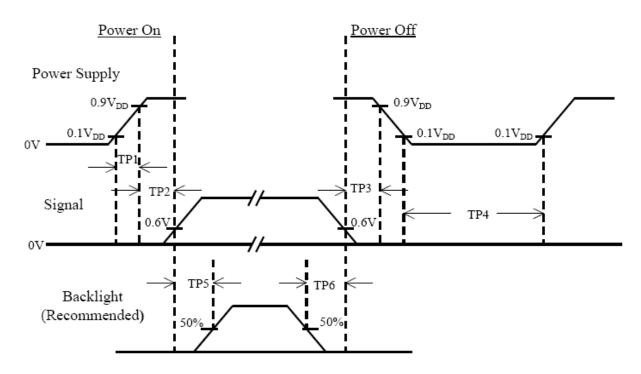




# 6. INTERFACE PIN ASSIGNMENT


| Pin No | Symbol | Function                                          |
|--------|--------|---------------------------------------------------|
| 1      | GND    | Power Ground                                      |
| 2      | GND    | Power Ground                                      |
| 3      | VCC    | 3.3V Power Supply for LCD                         |
| 4      | VCC    | 3.3V Power Supply for LCD                         |
| 5      | R0     | Red Data 0 (LSB)                                  |
| 6      | R1     | Red Data 1                                        |
| 7      | R2     | Red Data 2                                        |
| 8      | R3     | Red Data 3                                        |
| 9      | R4     | Red Data 4                                        |
| 10     | R5     | Red Data 5                                        |
| 11     | R6     | Red Data 6                                        |
| 12     | R7     | Red Data 7 (MSB)                                  |
| 13     | G0     | Green Data 0 (LSB)                                |
| 14     | G1     | Green Data 1                                      |
| 15     | G2     | Green Data 2                                      |
| 16     | G3     | Green Data 3                                      |
| 17     | G4     | Green Data 4                                      |
| 18     | G5     | Green Data 5                                      |
| 19     | G6     | Green Data 6                                      |
| 20     | G7     | Green Data 7 (MSB)                                |
| 21     | B0     | Blue Data 0 (LSB)                                 |
| 22     | B1     | Blue Data 1                                       |
| 23     | B2     | Blue Data 2                                       |
| 24     | В3     | Blue Data 3                                       |
| 25     | B4     | Blue Data 4                                       |
| 26     | B5     | Blue Data 5                                       |
| 27     | B6     | Blue Data 6                                       |
| 28     | B7     | Blue Data 7(MSB)                                  |
| 29     | GND    | Power Ground                                      |
| 30     | DCLK   | Clock Signals                                     |
| 31     | DISP   | Display on/off (High: on, Low :off)               |
| 32     | HD     | Horizontal SYNC signal.                           |
| 33     | VD     | Vertical SYNC signal                              |
| 34     | DENA   | Data Enable signal (to settle the viewing area)   |
| 35     | NC     | No Connect                                        |
| 36     | NC     | No Connect                                        |
| 37     | NC     | No Connect                                        |
| 38     | NC     | No Connect                                        |
| 39     | SC     | No function. Scan direction selectable by jumper. |

| 40 | GND   | Power Ground |
|----|-------|--------------|
| 41 | GND   | Power Ground |
| 42 | LED_K | LED cathode  |
| 43 | LED_A | LED anode    |
| 44 | LED_K | LED cathode  |
| 45 | LED_A | LED anode    |

# 7. INTERFACE TIMING








| ITEM                      | SYMBOL | MIN | TYP  | MAX  | UNIT   |
|---------------------------|--------|-----|------|------|--------|
| Clock Frequency           | 1/T1   |     | 33.3 | 50   | MHz    |
| HSYNC Plus Wide           | T2     | 4   | 48   | 64   | clocks |
| HSYNC to DE               | T3     | 88  | 88   | 88   | Clocks |
| Horizontal Display Period | T4     |     | 800  |      | Clocks |
| Horizontal total Period   | T5     | 908 | 928  | 1010 | Clocks |
| VSYNC Plus Wide           | T2     | 1   | 3    | 31   | Lines  |
| VSYNC to DE               | T6     | 32  | 32   | 32   | Lines  |
| Vertical Display Period   | T7     |     | 480  |      | Lines  |
| Vertical total Period     | T8     | 515 | 525  |      | Lines  |

# Power On/Off Sequence



| Item | Min. | Тур. | Max. | Unit | Remark |
|------|------|------|------|------|--------|
| TP1  | 0.5  |      | 10   | msec |        |
| TP2  | 0    |      | 50   | msec |        |
| TP3  | 0    |      | 50   | msec |        |
| TP4  | 500  |      |      | msec |        |
| TP5  | 200  |      |      |      |        |
| TP6  | 200  |      |      | msec |        |

#### Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of VCC.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VCC = off level, please keep the level of input signal on the low or keep a high impedance.
- (4) TP4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

# 8. Touch Panel SPECIFICATION

# 8.1. Basic Characteristic

| ITEM                                      | SPECIFICATION                                   |  |  |  |  |
|-------------------------------------------|-------------------------------------------------|--|--|--|--|
| Туре                                      | Projective Capacitive Touch Panel               |  |  |  |  |
| Activation                                | Multi-finger                                    |  |  |  |  |
| X/Y Position Reporting                    | Absolute Position                               |  |  |  |  |
| Touch Force                               | No contact pressure required                    |  |  |  |  |
| Calibration                               | No need for calibration                         |  |  |  |  |
| Report Rate                               | Approx 100 points/sec                           |  |  |  |  |
| Control IC                                | ILI2117A                                        |  |  |  |  |
| Conductive susceptibility IEC/EN61000-4-6 | 10Vrms                                          |  |  |  |  |
| Cover Glass                               | 2mm chemically strength glass with black border |  |  |  |  |
| Danding mathed                            | CG to sensor: optical bonding                   |  |  |  |  |
| Bonding method                            | TP module to LCM: tape bonding                  |  |  |  |  |

# 8.2. Optical Characteristic

| ITEM          | SPECIFICATION |
|---------------|---------------|
| Transmittance | 80% (min)     |

# 8.3. Electrical Characteristic

| ITEM          | SPECIFICATION             |
|---------------|---------------------------|
| I2C Interface | Power & signal Input 3.3V |

# 8.4. Interface Pin Assign

| Pin | Name  | Description  |
|-----|-------|--------------|
| 1   | SCL   | I2C Clock    |
| 2   | SDA   | I2C Data     |
| 3   | VDD   | Power 3.3V   |
| 4   | RESET | Active "Low" |
| 5   | INT   | Active "Low" |
| 6   | GND   | Power GND    |

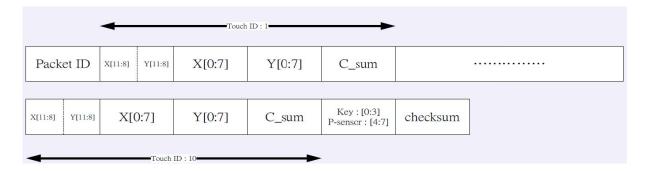
# 8.5. I2C AC Waveform



# 8.6. I2C Characteristics

Slave address: 0x26
 Clock: up to 400 kHz
 Packet length: 43 byte

4. Finger\_i touch end: The data which belongs to finger\_i is 0xFF


5. Position\_X[11:0] and Position\_Y[11:0] are ranging from 0~2047

6. Touch end: all data is 0xFF except for packet ID (0x5A) and checksum.

7. C\_sum: total delta\_C of each finger touch

#### 8.7. Data Format

| Slave<br>Address | Byte 0              | Byte 1                 | Byte 2   | Byte 3   | Byte 4 | Byte 5                 | Byte 6   | Byte 7   |
|------------------|---------------------|------------------------|----------|----------|--------|------------------------|----------|----------|
| 0x26(r)          | Packet ID<br>(0x5A) | X00[11:8]<br>Y00[11:8] | X00[7:0] | Y00[7:0] | C_sum  | X01[11:8]<br>Y01[11:8] | X01[7:0] | Y01[7:0] |
|                  | C_sum               | X02[11:8]<br>Y02[11:8] | X02[7:0] | Y02[7:0] | C_sum  | X03[11:8]<br>Y03[11:8] | X03[7:0] | Y03[7:0] |
|                  | C_sum               | X04[11:8]<br>Y04[11:8] | X04[7:0] | Y04[7:0] | C_sum  | X05[11:8]<br>Y05[11:8] | X05[7:0] | Y05[7:0] |
|                  | C_sum               | X06[11:8]<br>Y06[11:8] | X06[7:0] | Y06[7:0] | C_sum  | X07[11:8]<br>Y07[11:8] | X07[7:0] | Y07[7:0] |
|                  | C_sum               | X08[11:8]<br>Y08[11:8] | X08[7:0] | Y08[7:0] | C_sum  | X09[11:8]<br>Y09[11:8] | X09[7:0] | Y09[7:0] |
|                  | C_sum               | Key[3:0]               | Checksum |          |        |                        |          |          |



# 9. DISPLAYED COLOR AND INPUT DATA

#### DATA SIGNAL

|       |            | INPUT DATA           |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|-------|------------|----------------------|----|----|----|----|----|----|-----|-------|----|----|----|----|----|----|-----|-----|----|----|----|----|----------|----|-----|
| CC    | LOR        | R DATA G DATA B DATA |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|       | LOR        | R7                   | R6 | R5 | R4 | R3 | R2 | R1 | R0  | G7    | G6 | G5 | G4 | G3 | G2 | G1 | G0  | В7  | В6 | В5 | В4 | В3 | В2       | В1 | B0  |
|       |            | MSB                  |    |    |    |    |    |    | LSB | MSB   |    |    |    |    |    |    | LSB | MSB |    |    |    |    | <u> </u> |    | LSB |
|       | BLACK      | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | RED(255)   | 1                    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | GREEN(255) | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1     | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
| BASIC | BLUE(255)  | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1        | 1  | 1   |
| COLOR | CYAN       | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1     | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1        | 1  | 1   |
|       | MAGENTA    | 1                    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1        | 1  | 1   |
|       | YELLOW     | 1                    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1     | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | WHITE      | 1                    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1     | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1   | 1  | 1  | 1  | 1  | 1        | 1  | 1   |
|       | RED(1)     | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | RED(2)     | 0                    | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       |            | •                    |    |    |    |    |    |    |     | ····· |    |    |    | •  |    | •  |     |     | Ī  | •  |    |    | ļ        | Ĭ  |     |
| RED   |            | •                    |    |    |    |    |    |    |     |       |    |    |    | •  |    |    |     |     |    |    | Ì  |    | Ì        |    |     |
|       |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     | Ī  | Ī  |    |    | [        |    |     |
|       | RED(255)   | 1                    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | GREEN(1)   | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | GREEN(2)   | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 1  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
| GREEN |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|       |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|       | GREEN(255) | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1     | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 0   |
|       | BLUE(1)    | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0  | 1   |
|       | BLUE(2)    | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 1  | 0   |
|       |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
| BLUE  |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|       |            |                      |    |    |    |    |    |    |     |       |    |    |    |    |    |    |     |     |    |    |    |    |          |    |     |
|       | BLUE(255)  | 0                    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 1  | 1  | 1  | 1  | 1        | 1  | 1   |

# 9. RELIABILITY TEST CONDITIONS

| Test Item                                | Test Conditions                                                                                                             | Note |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| High Temperature Operation               | 60±3°C , Dry t=240 hrs                                                                                                      |      |
| Low Temperature Operation                | -20±3°C , Dry t=240 hrs                                                                                                     |      |
| High Temperature Storage                 | 70±3°C , Dry t=240 hrs                                                                                                      | 1,2  |
| Low Temperature Storage                  | -30±3°C , Dry t=240 hrs                                                                                                     | 1,2  |
| Storage at High Temperature and Humidity | 60°C, 90% RH , 240 hrs                                                                                                      | 1,2  |
| Thermal Shock Test                       | -20°C (30min.) ~ 25°C(5min.) ~ 70°C (30min.)<br>100 cycles                                                                  | 1,2  |
| Vibration Test (Packing)                 | Sweep frequency : 10 ~ 55 ~ 10 Hz/1min<br>Amplitude : 0.75mm<br>Test direction : X.Y.Z/3 axis<br>Duration : 30min/each axis | 2    |

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Note 3 : The module shouldn't be tested more than one condition, and all the test conditions are independent.

Note 4: All the reliability tests should be done without protective film on the module.

# Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

#### 10. GENERAL PRECAUTION

# 10-1 Safety

Liquid crystal is poisonous. Do not put it your month. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

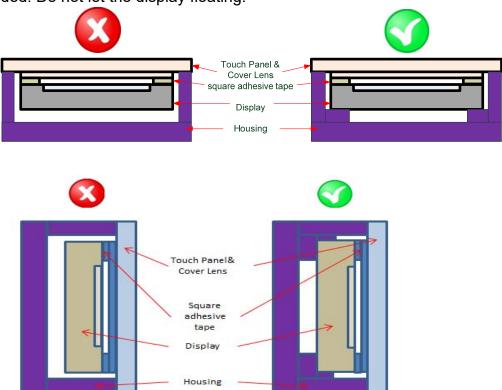
#### 10-2 Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
  - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
  - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

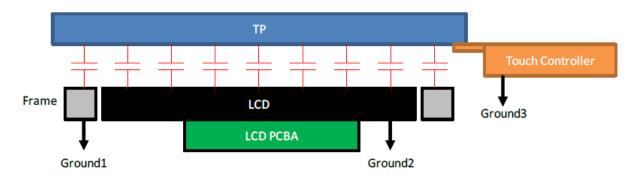
# 10-3 Static Electricity

- 1. Be sure to ground module before turning on power or operation module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

#### 10-4 Storage


- 1. Store the module in a dark room where must keep at +25±10<sup>°</sup>C and 65<sup>°</sup>RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.

#### 10-5 Cleaning

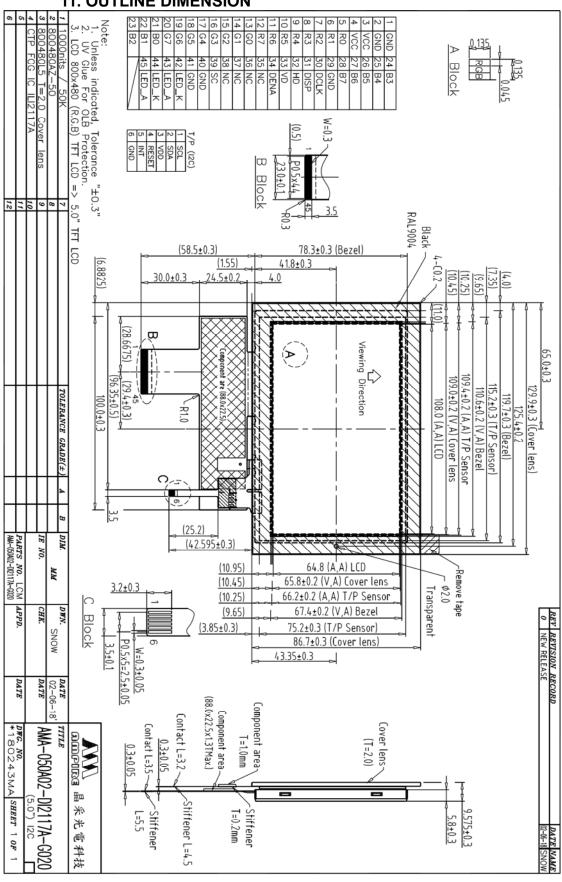

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

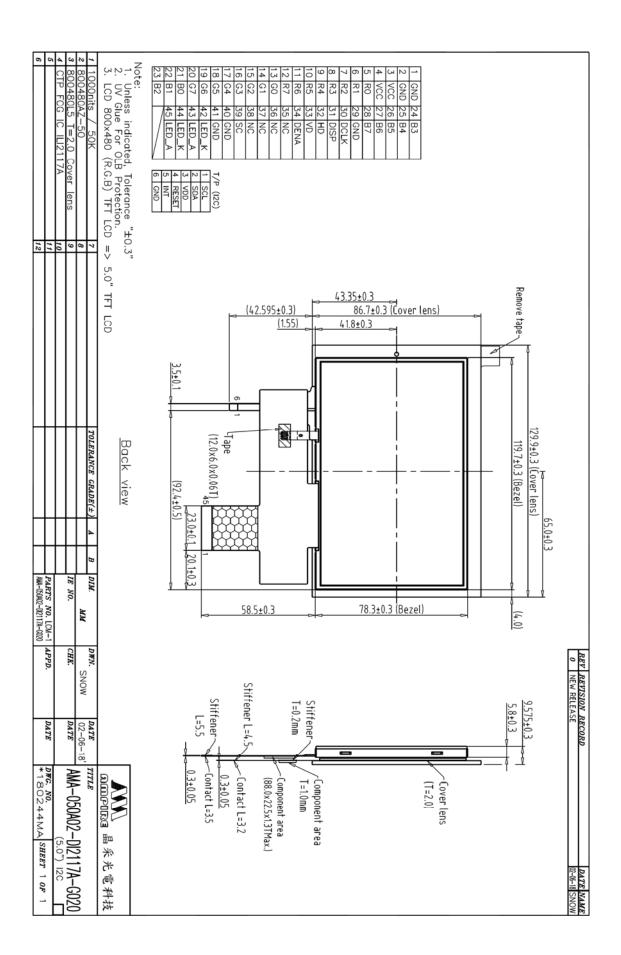
# 10-6 Mechanism (if the LCM using air bonding)

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.



(3) TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.





GND1, GND2 and GND3 should be connected together to have the same ground

# 10-7 Others

- 1. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- 2. Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver

# 11. OUTLINE DIMENSION



