| Tentative Specification | |----------------------------------| | Preliminary Specification | | Approval Specification | # MODEL NO.: G057VCE SUFFIX: TH1 | Customer: | | |--|---------------------------| | APPROVED BY | SIGNATURE | | Name / Title Note | | | Please return 1 copy for you signature and comments. | ur confirmation with your | | Approved By | Checked By | Prepared By | |-------------|------------|-------------| | 林秋森 | 吳承旻 | 許秝茵 | Version 2.0 6 January 2023 1 / 43 # **CONTENTS** | 1.1 OVERVIEW 5. 1.2 FEATURE 5. 1.3 APPLICATION 5. 1.4 GENERAL SPECIFICATIONS 5. 1.5 MECHANICAL SPECIFICATIONS 6. 2. ABSOLUTE MAXIMUM RATINGS 7. 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7. 2.2 ELECTRICAL ABSOLUTE RATINGS 6. 2.2.1 TFT LCD MODULE 6. 2.2.2 BACKLIGHT UNIT 8. 3. TFT LCD MODULE 9. 3.2 BACKLIGHT UNIT 11. 4. BLOCK DIAGRAM 12. 4.1 TFT LCD MODULE 12. 5. INPUT TERMINAL PIN ASSIGNMENT 13. 5.1 TFT LCD MODULE 15. 5.2 BACKLIGHT UNIT (CONVERTER CONNECTOR PIN) 15. 5.3 COLOR DATA INPUT ASSIGNMENT 16. 6. INTERFACE TIMING 17. 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17. 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 16. 6.3 AC ELECTRICAL CHARACTERISTICS 26. 6.4 POWER ON/OFF SEQUENCE 21. 6.5 SCANNING DIRECTION 22. 7.1 TEST CONDITIONS 24. 7.1 TEST CONDITIONS 24. | 1. GENERAL DESCRIPTION | 5 | |---|-------------------------------------|----| | 1.3 APPLICATION | 1.1 OVERVIEW | 5 | | 1.4 GENERAL SPECIFICATIONS | 1.2 FEATURE | 5 | | 1.5 MECHANICAL SPECIFICATIONS | 1.3 APPLICATION | 5 | | 2. ABSOLUTE MAXIMUM RATINGS 7 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 7 2.2 ELECTRICAL ABSOLUTE RATINGS 8 2.2.1 TFT LCD MODULE 8 2.2.2 BACKLIGHT UNIT 8 3.1 TFT LCD MODULE 9 3.1 TFT LCD MODULE 9 3.2 BACKLIGHT UNIT 11 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 BACKLIGHT UNIT (CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 17 6.3 AC ELECTRICAL CHARACTERISTICS 26 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING METHOD 26 | 1.4 GENERAL SPECIFICATIONS | 5 | | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | 1.5 MECHANICAL SPECIFICATIONS | 6 | | 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN) 5.3 COLOR DATA INPUT ASSIGNMENT 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 6.3 AC ELECTRICAL CHARACTERISTICS 6.4 POWER ON/OFF SEQUENCE 6.5 SCANNING DIRECTION 7. OPTICAL CHARACTERISTICS 7. OPTICAL CHARACTERISTICS 7. OPTICAL SPECIFICATIONS 7. OPTICAL SPECIFICATIONS 7. OPTICAL SPECIFICATIONS 7. PACKAGING 9. PACKAING SPECIFICATIONS 9. PACKAGING 9. PACKING SPECIFICATIONS 22. PACKING METHOD 23. UN-PACKING METHOD 24. DEFINITION OF LABELS 10.1 INX MODULE LABEL 30. 10.1 INX MODULE LABEL | 2. ABSOLUTE MAXIMUM RATINGS | 7 | | 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN) 5.3 COLOR DATA INPUT ASSIGNMENT 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.3 AC ELECTRICAL CHARACTERISTICS 6.4 POWER ON/OFF SEQUENCE 6.5 SCANNING DIRECTION 7. OPTICAL CHARACTERISTICS 7. OPTICAL CHARACTERISTICS 7. OPTICAL SPECIFICATIONS 8. RELIABILITY TEST CRITERIA 9. PACKAGING 9.1 PACKING METHOD 22 9.3 UN-PACKING METHOD 22 9.3 UN-PACKING METHOD 25 10. DEFINITION OF LABELS 10.1 INX MODULE LABEL 30 10.1 INX MODULE LABEL | 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | 7 | | 2.2.2 BACKLIGHT UNIT | 2.2 ELECTRICAL ABSOLUTE RATINGS | 8 | | 3. ELECTRICAL CHARACTERISTICS | 2.2.1 TFT LCD MODULE | 8 | | 3.1 TFT LCD MODULE | 2.2.2 BACKLIGHT UNIT | 8 | | 3.2 BACKLIGHT UNIT | 3. ELECTRICAL CHARACTERISTICS | 9 | | 4. BLOCK DIAGRAM 12 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 26 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 4.1 TFT LCD MODULE 12 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 5. INPUT TERMINAL PIN ASSIGNMENT 13 5.1 TFT LCD MODULE 13 5.2 BACKLIGHT UNIT (CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 5.1 TFT LCD MODULE 13 5.2 BACKLIGHT UNIT (CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 26 9.2 PACKING METHOD 26 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN) 15 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 5.3 COLOR DATA INPUT ASSIGNMENT 16 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 6. INTERFACE TIMING 17 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 25 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 17 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS 19 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 6.3 AC ELECTRICAL CHARACTERISTICS 20 6.4 POWER ON/OFF SEQUENCE 21 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 6.4 POWER ON/OFF SEQUENCE. 21 6.5 SCANNING DIRECTION. 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS. 24 7.2 OPTICAL SPECIFICATIONS. 24 8. RELIABILITY TEST CRITERIA. 27 9. PACKAGING. 28 9.1 PACKING SPECIFICATIONS. 28 9.2 PACKING METHOD. 28 9.3 UN-PACKING METHOD. 29 10. DEFINITION OF LABELS. 30 10.1 INX MODULE LABEL. 30 | | | | 6.5 SCANNING DIRECTION 23 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 7. OPTICAL CHARACTERISTICS 24 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | 6.4 POWER ON/OFF SEQUENCE | 21 | | 7.1 TEST CONDITIONS 24 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 7.2 OPTICAL SPECIFICATIONS 24 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 8. RELIABILITY TEST CRITERIA 27 9. PACKAGING 28 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 9. PACKAGING | | | | 9.1 PACKING SPECIFICATIONS 28 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 9.2 PACKING METHOD 28 9.3 UN-PACKING METHOD 29 10. DEFINITION OF LABELS 30 10.1 INX MODULE LABEL 30 | | | | 9.3 UN-PACKING METHOD | | | | 10.1 INX MODULE LABEL | | | | 10.1 INX MODULE LABEL30 | | | | | | | | 11. PRECAUTIONS31 | | | | | 11. PRECAUTIONS | 31 | | 11.1 ASSEMBLY AND HANDLING PRECAUTIONS | 31 | |--|----| | 11.2 STORAGE PRECAUTIONS | 31 | | 11.3 OTHER PRECAUTIONS | 32 | | 12. MECHANICAL CHARACTERISTICS | 33 | | Appendix. SYSTEM COVER DESIGN NOTICE | 35 | | | | # **REVISION HISTORY** | Version | Date | Page | Description | |---------|---------------|------|--| | Ver 2.0 | 06, JAN, 2023 | | Approval Specification was first issued. | Version 2.0 6 January 2023 4 / 43 #### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW G057VCE-TH1is a 5.7" TFT Liquid Crystal Display IAV module with LED Backlight units and 40 pins 1ch- TTL interface. This module supports 640 x 480 VGA mode and can display 262K colors. The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 5.7" VGA LCD panel and the LED driving device for Backlight is built in PCBA. #### **1.2 FEATURE** - VGA (640 x 480 pixels) resolution - DE (Data Enable) mode and DE+SYNC mode selection - TTL Interface - PSWG (Panel Standardization Working Group) - Wide operating temperature. - Reversible scan direction - RoHS compliance #### 1.3 APPLICATION - -TFT LCD Monitor - Factory Application - Amusement #### 1.4 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | |--------------------------|--------------------------------------|-------|------| | Active Area | 115.2 (H) x 86.4 (V) (5.7" diagonal) | mm | (1) | | Driver Element | a-Si TFT active matrix | - | - | | Pixel Number | 640 x R.G.B x 480 | pixel | - | | Pixel Pitch | 0.18(H) x 0.18(W) | mm | - | | Pixel Arrangement | RGB vertical Stripe | - | - | | Display Colors | 262K | color | - | | Display Mode | Normally Black | - | - | | Surface Treatment | Hard Coating (3H), Anti-Glare | - | - | | Module Power Consumption | 2.818 (Panel 0.518+BL 2.3) | W | Тур. | ### 1.5 MECHANICAL SPECIFICATIONS | Item | | Min. | Тур. | Max. | Unit | Note | |-------------|---------------|-------|-------|-------|------|------| | Module Size | Horizontal(H) | 143.5 | 144 | 144.5 | mm | | | | Vertical(V) | 104.1 | 104.6 | 105.1 | mm | (1) | | | Depth(D) | 11.8 | 12.3 | 12.8 | mm | | | Bezel Area | Horizontal | 117.6 | 118.2 | 118.4 | mm | - | | | Vertical | 88.8 | 89.4 | 89.6 | mm | | | Active Area | Horizontal | - | 115.2 | - | mm | | | Active Area | Vertical | - | 86.4 | - | mm | | | We | ight | 143 | 151 | 159 | g | | Note (1)Please refer to the attached drawings for more information of front and back outline dimensions. ### 2. ABSOLUTE MAXIMUM RATINGS #### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT | ltom | Cumbal | Va | lue | Lloit | Note | | |-------------------------------|-----------------|------|------|------------------------|--------|--| | Item | Symbol | Min. | Max. | Unit | Note | | | Operating Ambient Temperature | T _{OP} | -30 | +85 | $^{\circ}\!\mathbb{C}$ | (4)(2) | | | Storage Temperature | T _{ST} | -40 | +85 | $^{\circ}\!\mathbb{C}$ | (1)(2) | | Note (1) - (a) 90 %RH Max. - (b) Wet-bulb temperature should be 39 °C Max. - (c) No condensation. - Note (2) Panel surface temperature should be 0° C min. and 85° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 85° C. Version 2.0 6 January 2023 7 / 43 ### 2.2 ELECTRICAL ABSOLUTE RATINGS ### 2.2.1 TFT LCD MODULE | ltom | Symbol | Value | | Unit | Note | | |----------------------|--------|-------|------|-------|------|--| | Item | Symbol | Min. | Max. | Offic | Note | | | Power Supply Voltage | VCC | -0.3 | 4 | V | (1) | | | Logic Input Voltage | Vin | -0.3 | 4 | V | (1) | | ### 2.2.2 BACKLIGHT UNIT | Item | Symbol | Val | lue | Unit | Note | | |-------------------|---------|------|------|-------|----------|--| | item | Symbol | Min. | Max. | Offic | | | | Converter Voltage | Vi | -0.3 | 18 | V | (1), (2) | | | Enable Voltage | EN | | 5.5 | V | | | | Backlight Adjust | Dimming | | 5.5 | V | | | Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for LED (Refer to 3.2 for further information). ### 3. ELECTRICAL CHARACTERISTICS ### 3.1 TFT LCD MODULE | Parameter | Cumbal | Value | | | Unit | Note | | |----------------------|-----------------|--------------------|-------|----------|--------------------|------|------| | Parameter | Symbol | Min. | Тур. | Max. | Unit | Note | | | Power Supply Vo | ltage | V _{CC} | 3.0 | 3.3 | 3.6 | V | - | | Ripple Voltag | V_{RP} | - | - | 100 | mVp-p | | | | Inrush Currer | Inrush Current | | | - | 2.0 | Α | (2) | | Dower Supply Current | White | lcc | - | 157 | 187 | mA | (3)a | | Power Supply Current | Black | | - | 106 | 125 | mA | (3)b | | Power Consu | P_L | - | 0.518 | 0.617 | W | | | | Logic High Input V | V _{IH} | 0.7V _{CC} | | V_{CC} | V | | | | Logic Low Input V | oltage | V _{IL} | GND | | 0.3V _{CC} | V | | Note (1) The module should be always operated within above ranges. Note (2) Measurement Conditions: Version 2.0 6 January 2023 9 / 43 Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 \pm 2 $^{\circ}$ C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed. #### 3.2 BACKLIGHT UNIT | Parame | otor | Symbol | | Value | | Unit | Note | |---------------------------|--------------------------------|--------------------|--------|-------|------|-----------------|--| | Parame | elei | Symbol | Min. | Тур. | Max. | O'III | Note | | Converter Inp | ut Voltage | Vi | 10.8 | 12.0 | 13.2 | V_{DC} | (Duty 100%) | | Converter Input F | Ripple Voltage | V_{iRP} | - | - | 500 | mV | | | Converter Inp | ut Current | l _i | 0.16 | 0.19 | 0.22 | A _{DC} | @ Vi = 12V
(Duty 100%) | | Converter Inru | sh Current | I _{Irush} | - | ı | 3.0 | А | @ Vi rising
time=10ms
(Vi=12V) | | Input Power Co | Input Power Consumption | | - | 2.3 | | W | (1) | | EN Control Level | Backlight on | ENLED | 2.0 | 3.3 | 5.0 | V | | | EN Control Level | Backlight off | (BLON) | 0 | 1 | 0.3 | V | | | PWM Control Level | PWM High Level | Dimming | 2.0 | - | 5.0 | V | | | P VV IVI COI III OI Level | PWM Low Level | (E_PWM) | 0 | • | 0.15 | V | | | PWN Noise | Range | VNoise | - | - | 0.1 | V | | | PWM Control | Frequency | f_{PWM} | 190 | 200 | 20k | Hz | (2) | | DWW Direction Co. | . , | | | - | 100 | % | (2), @
190Hz <f<sub>PWM<1kHz</f<sub> | | Pyvivi Dimming Col | PWM Dimming Control Duty Ratio | | 20 | - | 100 | % | (2), @
1kHz≦f _{PWM} <20kHz | | LED Life | Time | L _{LED} | 50,000 | | - | Hrs | (3) | Note (1)LED current is measured by utilizing a high frequency current meter as shown below: - Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift. - Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a **suggestion** that PWM control frequency should be **less than 1KHz**. Version 2.0 6 January 2023 11 / 43 #### 4. BLOCK DIAGRAM ### 4.1 TFT LCD MODULE #### 5. INPUT TERMINAL PIN ASSIGNMENT #### **5.1 TFT LCD MODULE** | Pin No. | Symbol | Function | Note | |---------|--------|---|-------------------| | 1 | GND | Ground | 110.0 | | 2 | CLK | Dot Clock. Latch data at the rising edge. | | | 3 | IHS | Horizontal synchronous signal | | | 4 | IVS | Vertical synchronous signal | | | 5 | GND | Ground | | | 6 | R5 | Red data (MSB) | | | 7 | R4 | Red data | | | 8 | R3 | Red data | | | 9 | R2 | Red data | | | 10 | R1 | Red data | | | 11 | R0 | Red data (LSB) | | | 12 | GND | Ground | | | 13 | G5 | Green data (MSB) | | | 14 | G4 | Green data | | | 15 | G3 | Green data | | | 16 | G2 | Green data | | | 17 | G1 | Green data | | | 18 | G0 | Green data (LSB) | | | 19 | GND | Ground | | | 20 | B5 | Blue data (MSB) | Note (3) | | 21 | B4 | Blue data | 14010 (0) | | 22 | B3 | Blue data | | | 23 | B2 | Blue data | | | 24 | B1 | Blue data | | | 25 | B0 | Blue data (LSB) | | | 26 | GND | Ground | | | 27 | DE | Data Enable Signal | | | 28 | NC | No Connection | Note (3) | | 29 | NC | No Connection | Note (3) | | | | Horizontal Reverse Scan Control, | Note (3) | | 30 | R/L | Low or NC → Normal Mode. | | | | | High → Horizontal Reverse Scan | | | | | Vertical Reverse Scan Control, | Note (3) | | 31 | U/D | High or NC → Normal Mode | , , | | | | Low → Vertical Reverse Scan | | | 32 | NC | No Connection | Note (3) Note (4) | | 33 | NC | No Connection | Note (3) Note (4) | | 34 | NC | No Connection | Note (3) Note (4) | | | | DE / HV mode select. | Note (3) | | 35 | MODE | High → HV mode. | | | | | Low or NC → DE mode. | | | 36 | NC | No Connection | Note (3) Note (4) | | 37 | NC | No Connection | Note (3) | | 38 | VCC | Power supply: +3.3V | | | 39 | VCC | Power supply: +3.3V | | | 40 | VCC | Power supply: +3.3V | | Note (1) Connector Part No.: 20455-040E-76(I-PEX) or equivalent. Note (2) User's connector Part No.: 20453-040T-03(I-PEX) or equivalent. Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection". Note (4) Pin32, Pin33, Pin34, Pin36 input signals should be set to no connection or ground, this module would operate normally. ### **5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN)** | Pin | Symbol | Description | Remark | |-----|-----------|-------------------------|---| | 1 | NC | Not Connect | | | 2 | Dimming | Backlight Adjust | PWM Dimming
(Hi: 3.3V _{DC} , Lo: 0V _{DC}) | | 3 | EN | Enable pin | 3.3V | | 4 | V_{GND} | Converter ground | Ground | | 5 | V_{i} | Converter input voltage | 12V | Note (1) Connector Part No.: CI4205M2HRD-NH (Cvilux) or equivalent. Note (2)User's connector Part No.: 9827H-04-N0HF(SWB) or equivalent. ### **5.3 COLOR DATA INPUT ASSIGNMENT** The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input. | | | | | | | | | | | ata (| Signa | al | | | | | | | | |--------|---------------|----|----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----|----| | | Color | | | Re | ed | | | | | Gre | en | | | | | Bl | ue | | | | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | В3 | B2 | B1 | B0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Red(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Red | Red(61) | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : (21) | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Green | Green(61) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Gray | Blue(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Scale | | | : | | : | | : | : | : | | : | | : | : | : | : | : | | | | Of | :
Div (C4) | : | : | : | | : | : | : | : | : | | : | : | | ; | ; | • | : | ; | | Blue | Blue(61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1)0: Low Level Voltage, 1: High Level Voltage ### 6. INTERFACE TIMING ### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS** The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | | |----------------------------|--------------------------------------|------------------------|---------|-------|---------------------|----------------|-------------------------|--| | | Frequency | Fr | 23.9 | 25.2 | 29.8 | MHz | - | | | | Period | T _c | 33.56 | 39.71 | 41.84 | ns | | | | DCLK | Input cycle to cycle jitter | T _{rcl} | | | 200 | ns | (a) | | | | Spread spectrum modulation range | F _{clkin_mod} | 0.98*Fc | ı | 1.02*F _c | MHz | (b) | | | | Spread spectrum modulation frequency | F _{SSM} | - | ı | 200 | KHz | (b) | | | | Frame Rate | F _r | | 60 | | Hz | $Tv=T_{vd}+T_{vb}$ | | | Vertical Display | Total | T _v | 515 | 525 | 611 | T _h | - | | | Term | Active Display | T_{vd} | 480 | 480 | 480 | T _h | - | | | | Blank | T_{vb} | 35 | 45 | 131 | T _h | - | | | Hard and Disale | Total | T _h | 750 | 800 | 814 | T _c | $T_h = T_{hd} + T_{hb}$ | | | Horizontal Display
Term | Active Display | T _{hd} | 640 | 640 | 640 | T _c | - | | | 161111 | Blank | T _{hb} | 110 | 160 | 174 | T _c | - | | Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally. Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally. #### **INPUT SIGNAL TIMING DIAGRAM** Note (a) The input clock cycle-to-cycle jitter is defined as below figures. $T_{rcl} = I T1 - TI$ Note (b) The SSCG (Spread spectrum clock generator) is defined as below figures. ### 6.2 DE +Sync Mode INPUT SIGNAL TIMING SPECIFICATIONS The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |--------------------------------|----------------|--------|------|------|------|------|------| | DCLK | Frequency | Tc | 23.9 | 25.2 | 29.8 | MHz | | | | Total | Τv | 515 | 525 | 611 | Th | | | | Display | Tvd | - | 480 | - | Th | | | Vertical Active Display Term | Front Porch | Tvf | 3 | 10 | 126 | Th | | | | Back Porch | Tvb | - | 33 | - | Th | | | | VS Pluse width | Tvp | 1 | 2 | 4 | Th | | | | Total | Th | 750 | 800 | 814 | Tc | | | | Display | Thd | - | 640 | ı | Tc | | | Horizontal Active Display Term | Front Porch | Thf | 28 | 126 | 142 | Tc | | | | Back Porch | Thb | - | 32 | 1 | Tc | | | | HS Pluse width | Thp | 1 | 2 | 31 | Tc | | Note (1) The Tv(Tvd+Tvb+Tvf+Tvp) must be integer, otherwise, the module would operate abnormally #### **INPUT SIGNAL TIMING DIAGRAM** ### **6.3 AC ELECTRICAL CHARACTERISTICS** | Parameter | Symbol | | Value | | | Condition | | |-----------------|--------|------|-------|------|------|-----------|--| | raiailletei | Symbol | Min. | Тур. | Max. | Unit | Condition | | | Data setup time | Tdsu | 10 | - | ı | ns | Note (1) | | | Data hold time | Tdhd | 10 | - | - | ns | Note (1) | | | DE setup time | Tesu | 10 | - | - | ns | | | | HS setup time | Thst | 10 | - | - | ns | | | | HS hold time | Thhd | 10 | - | - | ns | | | | VS setup time | Tvst | 10 | - | - | ns | | | | VS hold time | Tvhd | 10 | - | ı | ns | | | Note (1) CLK latching data at the rising edge. ### **Clock and Data input waveform** #### 6.4 POWER ON/OFF SEQUENCE To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below. | Doromotor | | Units | | | |-----------|-----|---------|-----|-------| | Parameter | Min | Тур Мах | | Units | | T1 | 0.5 | 1 | 10 | ms | | T2 | 0 | 1 | 50 | ms | | T3 | 0 | - | 50 | ms | | T4 | 500 | - | - | ms | | T5 | 450 | - | - | ms | | T6 | 200 | - | - | ms | | Т7 | 10 | - | 100 | ms | | Т8 | 10 | - | - | ms | | Т9 | 10 | - | - | ms | | T10 | 20 | - | 50 | ms | - Note(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc. - Note(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen. - Note(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance. Version 2.0 6 January 2023 21 / 43 - Note(4) T4 should be measured after the module has been fully discharged between power off and on period. - Note(5) Interface signal shall not be kept at high impedance when the power is on. - Note(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence. - Note(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec #### 6.5 SCANNING DIRECTION The following figures show the image see from the front view. The arrow indicates the direction of scan. Fig.1 Normal Scan Fig.2 Reverse Scan Fig.3 Reverse Scan Fig.4 Reverse Scan PCBA on the top side PCBA on the top side - Fig. 1 Normal scan (pin 30,R/L=Low or NC, pin 31,U/D = High or NC) - Fig. 2 Reverse scan (pin 30,R/L=High, pin 31,U/D = High or NC) - Fig. 3 Reverse scan (pin 30,R/L=Low or NC, pin 31,U/D = Low) - Fig. 4 Reverse scan (pin 30,R/L=High, pin 31,U/D = Low) ### 7. OPTICAL CHARACTERISTICS #### 7.1 TEST CONDITIONS | Item | Symbol | Value | Unit | | | | |---------------------|---|-------|------|--|--|--| | Ambient Temperature | Ta | 25±2 | оС | | | | | Ambient Humidity | Ha | 50±10 | %RH | | | | | Supply Voltage | According to typical value and tolerance in | | | | | | | Input Signal | "ELECTRICAL CHARACTERISTICS" | | | | | | | PWM Duty Ratio | D | 100 | % | | | | #### 7.2 OPTICAL SPECIFICATIONS The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5). | Iter | n | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | |---------------|--------------|--------|--|-------|-------|-------|------|----------| | | Red | Rx | | 0.597 | 0.647 | 0.697 | | | | | Reu | Ry | | 0.290 | 0.340 | 0.390 | | | | | Green | Gx | | 0.270 | 0.320 | 0.370 | | | | Color | Green | Gy | | 0.553 | 0.603 | 0.653 | | (1) (5) | | Chromaticity | Blue | Bx | $\theta X=0^{\circ}, \ \theta Y=0^{\circ}$ | 0.102 | 0.152 | 0.202 | - | (1), (5) | | | blue | Ву | Grayscale Maximum | 0.000 | 0.050 | 0.100 | | | | | White | Wx | | 0.263 | 0.313 | 0.363 | | | | | vviile | Wy | | 0.279 | 0.329 | 0.379 | | | | Center Lumina | nce of White | LC | | 360 | 450 | | | (4), (5) | | Contrast | Ratio | CR | | 700 | 1000 | | | (2), (5) | | Respons | o Timo | TR | θX=0°, θY =0° | - | 13 | 18 | - | (3) | | Respons | e mine | TF | ₩=0 , ₩1 =0 | - | 12 | 17 | - | (3) | | White Va | riation | δW | θX=0°, θY =0° | 72 | 80 | - | % | (5), (6) | | | Horizontal | θX+ | | 80 | 89 | - | | | | Viewing Angle | Honzontai | θX- | CR≧10 | 80 | 89 | - | Deg. | (1), (5) | | | Vertical | θΥ+ | | 80 | 89 | - | | | | | vertical | θΥ- | | 80 | 89 | - | | | ### Definition: Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White: Luminance of Grayscale Maximum (All R,G,B) Black: Luminance of grayscale 0 (All R,G,B) Note (1)Definition of Viewing Angle (θx , θy): Note (2) Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression at center point. Contrast Ratio (CR) = White / Black Note (3)Definition of Response Time (T_R, T_F): Note (4) Definition of Luminance of White (L_C): Measure the luminance of White at center point. #### Note (5) Measurement Setup: The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing. Note (6) Definition of White Variation (δW): Measure the luminance of White at 5 points. Luminance of White : L(X) , where X is from 1 to 5. $$\delta W = \frac{Minimum [L(1) to L(5)]}{Maximum [L(1) to L(5)]} X 100\%$$ #### 8. RELIABILITY TEST CRITERIA | Test Item | Test Condition | Note | | | |---|---|--------------------|--|--| | High Temperature Storage Test | 85℃, 240 hours | | | | | Low Temperature Storage Test | -40°C, 240 hours | | | | | Thermal Shock Storage Test | -30°C, 0.5 hour ←→70°C, 0.5 hour; 100cycles, 1 hour/cycle) | (1) (2) | | | | High Temperature Operation Test | 85℃, 240 hours | (1),(2)
(4),(5) | | | | Low Temperature Operation Test | -30°C, 240 hours | | | | | High Temperature & High Humidity Operation Test | 60℃, RH 90%, 240 hours | | | | | · | 150pF, 330 Ω , 1 sec/cycle | | | | | ESD Test (Operation) | Condition 1 : panel contact, ±8 KV | (1), (4) | | | | | Condition 2 : panel non-contact ±15 KV | | | | | Shock (Non-Operating) | 50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direction | | | | | Vibration (Non-Operating) | 1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X,
Y, Z direction | | | | - Note (1) There should be no condensation on the surface of panel during test, - Note (2) Temperature of panel display surface area should be 85°C Max. - Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. - Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test. - Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature. ### 9. PACKAGING ### 9.1 PACKING SPECIFICATIONS - (1) 60pcs LCD modules / 1 Box - (2) Box dimensions: 500 (L) X 400 (W) X 330 (H) mm - (3) Weight: approximately 11.65Kg (60 modules per box) ### 9.2 PACKING METHOD Figure. 9-1 Packing Figure. 9-2 Packing ### 9.3 UN-PACKING METHOD Figure. 9-3 Un-packing method #### 10. DEFINITION OF LABELS #### **10.1 INX MODULE LABEL** The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. Note (1) Safety Compliance(UL logo) will open after C1 version. (a) Model Name: G057VCE-TH1 (b)* * * * : Factory ID Serial ID includes the information as below: (a) Manufactured Date: Year: 1~9, for 2021~2029 Month: 1~9, A~C, for Jan. ~ Dec. Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U (b) Revision Code: cover all the change (c) Serial No.: Manufacturing sequence of product # INNOLUX 群創光電 ### PRODUCT SPECIFICATION #### 11. PRECAUTIONS #### 11.1 ASSEMBLY AND HANDLING PRECAUTIONS - (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module. - (2)While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer. - (3)Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process. - (4)Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched. - (5)If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction. - (6)Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time. - (7)If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap. - (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC. - (9)Do not disassemble the module. - (10)Do not pull or fold the lamp wire. - (11)Pins of I/F connector should not be touched directly with bare hands. #### 11.2 STORAGE PRECAUTIONS - (1)When storing for a long time, the following precautions are necessary. - (a)Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH. - (b) The polarizer surface should not come in contact with any other object. - (c) It is recommended that they be stored in the container in which they were shipped. - (d) Storage condition is guaranteed under packing conditions. - (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition - (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions. - (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating. - (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the respons time will become slowly, and the starting voltage of lamp will be higher than the room temperature. ### 11.3 OTHER PRECAUTIONS - (1)Normal operating condition - (a) Display pattern: dynamic pattern (Real display) - (Note) Long-term static display can cause image sticking. - (2)Operating usages to protect against image sticking due to long-term static display - (a) Static information display recommended to use with moving image. - (3) Abnormal condition just means conditions except normal condition. ### 12. MECHANICAL CHARACTERISTICS ### **Appendix. SYSTEM COVER DESIGN NOTICE** ### Definition a. To prevent from abnormal display & white spot after mechanical test, we suggest using Tape/Sponge as medium between chassis and Module rear cover could reduce the occurrence of white spot. b. When using the Tape/Sponge, we suggest it be lay over between set chassis and Module rear cover. It is not recommended to add Tape/Sponge in separate location. Since each Tape/Sponge may act as pressure concentration location. Version 2.0 6 January 2023 36 / 43 Version 2.0 6 January 2023 38 / 43 Version 2.0 6 January 2023 39 / 43 Version 2.0 6 January 2023 40 / 43 Version 2.0 6 January 2023 41 / 43