FOR MESSRS : _____ DATE : <u>Jan. 6th,2023</u> ### CUSTOMER'S ACCEPTANCE SPECIFICATIONS ## TX13D202VM5BAA ### Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|-------------------------------|------------| | 1 | COVER | 7B64PS 2701- TX13D202VM5BAA-3 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702- TX13D202VM5BAA-3 | 2-1/1 | | 3 | GENERAL DATA | 7B64PS 2703- TX13D202VM5BAA-3 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704- TX13D202VM5BAA-3 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705- TX13D202VM5BAA-3 | 5-1/2~2/2 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706- TX13D202VM5BAA-3 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707- TX13D202VM5BAA-3 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708- TX13D202VM5BAA-3 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709- TX13D202VM5BAA-3 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710- TX13D202VM5BAA-3 | 10-1/2~2/2 | | 11 | APPEARANCE STANDARD | 7B64PS 2711- TX13D202VM5BAA-3 | 11-1/3~3/3 | | 12 | PRECAUTIONS | 7B64PS 2712- TX13D202VM5BAA-3 | 12-1/2~2/2 | | 13 | DESIGNATION OF LOT MARK | 7B64PS 2713- TX13D202VM5BAA-3 | 13-1/1 | ACCEPTED BY: _____ PROPOSED BY: Mex Lee | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2701-TX13D202VM5BAA-3 | PAGE | 1-1/1 | |----------------------------------|--------------|------------------------------|------|-------| |----------------------------------|--------------|------------------------------|------|-------| ## 2. RECORD OF REVISION | Jan.6,'23 7B TX Pa 7B TX Pa All 7B TX Pa 7B TX TX | 664PS 2701 -
613D202VM5BAA-2
age 11-2/3
664PS 2701 -
613D202VM5BAA-3
age 1-1/1
664PS 2713 -
613D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
613D202VM5BAA-3
age 3-1/1
664PS 2705 -
613D202VM5BAA-3
age 5-1/2 | Com From to "JE" 3.1 D Revise 5.1 Le Revise | Dot-Defect | Bright Bright Bright Bright Contained Bright Bri | nt dot-de c dot-def :+ Dark nt dot-de k dot-def ged : DUP ectror nged: OPTO aohsii JRES Consur | Arefect 1 fect 2 point 3 Arefect 0 fect 2 Indicate the second of s | ea① dot dot dot ea① dot dot dot rea① dot dot dot dot | Area② 2 dot 3 dot 4 dot Area② 0 dot 3 dot Ja CS IN | Max | 3 dd 4 dd 5 dd 5 dd 5 dd 5 dd 5 dd 5 dd | number ot | (Note | |--|--|--|--|--|--|--|--|---|----------|---|--------------|------------------| | Jan.6,'23 7B TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX Pa 7B TX TX | age 11-2/3
age 11-2/3
age 1-1/1
a64PS 2713 -
age 13-1/1
page
a64PS 2703 -
age 3-1/1
age 3-1/1
age 3-1/1
age 3-1/1
age 3-1/1
age 3-1/1
age 3-1/1
age 3-1/1 | Com From to "JE 3.1 D Revis 5.1 Le Revis | Dot-Defect | Bright Bright Bright Darl Change Groepto-Ele ne change IlUNG Inc. K FEATU OWER C | ex dot-def
+ Dark Int dot-def k dot-def ged : OPTO aohsii JRES Consur | fect 1 fect 2 point 3 Ar fect 0 fect 2 | dot dot dot dot dot dot dot dot d | 2 dot 3 dot 4 dot Area② 0 dot 3 dot Ja CS IN | Max | 3 dd 4 dd 5 dd 5 dd 5 dd 5 dd 5 dd 5 dd | number ot | (Note | | Jan.6,'23 7B TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX Pa 7B TX | 364PS 2701 -
313D202VM5BAA-3
age 1-1/1
364PS 2713 -
313D202VM5BAA-3
age 13-1/1
page
364PS 2703 -
313D202VM5BAA-3
age 3-1/1
364PS 2705 -
313D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo pany nam "KAOHS DI Taiwan USPLAY F sed the Po | Bright Bright Bright Darl Change Groepto-Ele ne change IlUNG Inc. K FEATU OWER C | ex dot-def
+ Dark Int dot-def k dot-def ged : OPTO aohsii JRES Consur | fect 1 fect 2 point 3 Ar fect 0 fect 2 | dot dot dot dot dot dot dot dot d | 2 dot 3 dot 4 dot Area② 0 dot 3 dot Ja CS IN | Max | 3 dd 4 dd 5 dd 5 dd 5 dd 5 dd 5 dd 5 dd | number ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX Pa 7B TX TX TX | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo pany nam "KAOHS DI Taiwan USPLAY F sed the Po | Bright Bright Bright Darl Change Groepto-Ele ne change IlUNG Inc. K FEATU OWER C | ex dot-def
+ Dark Int dot-def k dot-def ged : OPTO aohsii JRES Consur | point 3 Ar efect 0 fect 2 | dot dot dot dot dot dot | 3 dot 4 dot Area② 0 dot 3 dot Ja CS IN | pan (C." | 4 dd 5 | number ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Bright Bright Bright Darl Change Groepto-Ele ne change IlUNG Inc. K FEATU OWER C | ex dot-def
+ Dark Int dot-def k dot-def ged : OPTO aohsii JRES Consur | point 3 Ar efect 0 fect 2 | dot dot dot dot dot dot dot | 4 dot Area② 0 dot 3 dot Ja CS IN | pan (C." | 5 do | number ot ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Bright Bright Bright Dark Change Group to - Ele ne change I lung I lnc. K FEATU OWER C | et ron
nt dot-det
k dot-det
ged :
DUP
ectron
nged:
OPTO
aohsii
JRES | point 3 Ar afect 0 fect 2 | dot dot dot dot dot dot dot | 4 dot Area② 0 dot 3 dot Ja CS IN | pan (C." | 5 do | number ot ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Bright Dark Dark Dark Dark Dark Dark Dark Dark | ged : DUP ectror nged: OPTO aohsii JRES Consur | Arefect 0 fect 2 | ea① dot dot ch" | Area② 0 dot 3 dot Ja CS IN | pan (C." | 0 dd 5 dd | number out | (Note | | TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Gropto-Electrone Character Country Cou | ged : DUP ectror nged: OPTO aohsid | efect 0 fect 2 inics Inc. D-ELECT | dot
dot
→
RONI
ch" | 0 dot
3 dot
Ja | pan (C." | 0 dd 5 dd | ot
ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Gropto-Electrone Character Country Cou | ged : DUP ectror nged: OPTO aohsid | efect 0 fect 2 inics Inc. D-ELECT | dot
dot
→
RONI
ch" | 0 dot
3 dot
Ja | pan (C." | 0 dd 5 dd | ot
ot | (Note | | TX Pa 7B TX Pa All 7B TX Pa | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com From to "JE 3.1 D Revis 5.1 Le Revis | pany logo JDI phsiung Openany name "KAOHS DI Taiwan USPLAY Forms Seed the Potenany CD CHAF | Gropto-Electrone Character Country Cou | ged : DUP ectror nged: OPTO aohsid | fect 2 | dot → RONI ch" | 3 dot Ja CS IN | C." | 5 d | ot
Dlay I | (Note | | TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com
From
to "JE
3.1 D
Revis
5.1 Le
Revis | pany nam "KAOHS "I Taiwan "ISPLAY Fed the Po | Gropto-Elene changlung inc. K | ged : DUP ectror nged: OPTO aohsii JRES Consur | nics Inc. D-ELECT | →
RONI
ch" | Ja
CS IN | C." | J | lay I |)
nc. | | TX Pa 7B TX Pa All 7B TX Pa 7B TX Pa 7B TX Pa 7B TX | (13D202VM5BAA-3
age 1-1/1
664PS 2713 -
(13D202VM5BAA-3
age 13-1/1
page
664PS 2703 -
(13D202VM5BAA-3
age 3-1/1
664PS 2705 -
(13D202VM5BAA-3 | Com
From
to "JE
3.1 D
Revis
5.1 Le
Revis | pany nam "KAOHS "I Taiwan "ISPLAY Fed the Po | Gropto-Electrone characteristics in Inc. K | nged:
OPTO
aohsii
JRES | D-ELECT | ch" | CS IN | C." | | | | | Pa
7B
TX
Pa
7B
TX | ige 3-1/1
64PS 2705 -
(13D202VM5BAA-3 | 5.1 Lo | CD CHAF | RACTE | | mption fo | r LCE | from | 0.6W | to 0 | 0014 | 1 | | 7B
TX | ige 5-1/2 | | Revised the Power Consumption for LCD from 0.6W to 0.38W 5.1 LCD CHARACTERISTICS Revised the Power Supply Current from 160 to 115mA for Typical and 220 | | | | | | | | | | | 7B
TX | | to 140mA for Max. | | | | | | | | | | | | TX | 64PS 2705 - | 5.2 BACKLIGHT CHARACTERISTICS | | | | | | | | | | | | Pa | (13D202VM5BAA-3 | Correction on LED Forward Current | | | | | | | | | | | | | ige 5-2/2 | | | | | | | | | | | | | | · | | LED Input | | Symbol | Condition | | | | 2.5 | Unit
V | Remarks
Note1 | | | | | | | | 0V; 0% dut | | | | 30 | | | | | | | LED Forward | d Current | ILED | 3.3VDC; 100% | duty | 15 | 20 | 30 | mA | Note 2 | | | | | LED life | etime | - | ILED=180 m. | A | - 1 | 0K | - | hrs | Note 3 | | | | | | | | | \downarrow | | | | | | | | | | Iten | | Symbol | Condition | | | | ax. | Unit | Remarks | | | | | LED Input | Voltage | VLED | 0V; 0% dut | | | | 2.5
80 | V | Note1 | | | | | LED Forwar | rd Current | ILED | 3.3VDC; 100% | - | | | 30 | mA | Note 2 | | | | | LED life | etime | - | ILED=250 m. | A | - 7 | 0K | - | hrs | Note 3 | | TX | 664PS 2713 -
(13D202VM5BAA-3
age 13-1/1 | | ESIGNA ⁻
d : Rev:B | | of LOT | MARK | | | | | | | 2-1/1 ### 3. GENERAL DATA #### 3.1 DISPLAY FEATURES This module is a 5" VGA of 4:3 format of amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially . This display is RoHS compliant, and COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX13D202VM5BAA | |-------------------------|--| | Module Dimensions | 119.4(W)mm x 89.1(H)mm x 9.3(D)mm | | LCD Active Area | 101.76(W)mm x 76.32(H)mm | | Pixel Pitch | 0.159(W)mm x 0.159(H)mm | | Resolution | 640x3(R,G,B)(W)x480(H) Dots | | Color Pixel Arrangement | R, G, B Vertical stripe | | LCD Type | Transmissive Color TFT; Normally White | | Display Type | Active Matrix | | Top Polarizer Type | Anti-glare Polarizer Film | | Number of Colors | 262k Colors (6-bit RGB) | | Backlight | Light Emitting Diode (LED) | | Weight | 120 g | | Interface | 20pin LVDS | | Power Supply Voltage | 3.3V for LCD driving; 12 V for B/L driving | | Power Consumption | 0.38 W for LCD ; 2.7 W for B/L | | Viewing Direction | Super Wide version | ### 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|-----------------|------|----------------------|------|---------| | Supply Voltage | V_{DD} | -0.3 | 5.0 | V | - | | Input Voltage of Logic | Vı | -0.3 | V _{DD} +0.3 | V | Note 1 | | Operating Temperature | Top | -30 | 80 | °C | Note 2 | | Storage Temperature | T _{st} | -30 | 80 | °C | Note 2 | | Backlight Input Voltage | VLED | - | 15 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}$. - -Operating under high temperature will shorten LED lifetime. ### 5. ELECTRICAL CHARACTERISTICS #### 5.1 LCD CHARACTERISTICS $T_a = 25 \, {}^{\circ}C, \text{ Vss} = 0V$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |------------------------|--------------------|-----------------------|------|------|------|------|----------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Input Voltage of Logic | | ViH | - | - | +100 | >/ | NI-1-4 | | | Vı | VıL | -100 | - | - | mV | Note 1 | | Power Supply Current | I _{DD} | V _{DD} =3.3V | - | 115 | 140 | mA | Note 2,3 | | Frame Frequency | $f_{\it Frame}$ | - | - | 60 | 66 | Hz | - | | CLK Frequency | f_{CLK} | - | 21.0 | 25.2 | 29.7 | MHz | - | Note 1: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. The input terminal of LVDS receiver is terminated with 100Ω . - Note 2: An all black check pattern is used when measuring I_{DD} . f_{Frame} is set to 60 Hz. - Note 3: 1.0A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred. | SHEET | |-------| | NO. | PAGE #### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \,^{\circ} C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|------------------|--------------------------|------|------|------|------|---------| | LED Input Voltage | V_{LED} | - | 11.5 | 12.0 | 12.5 | V | Note1 | | LED Forward Current | | 0V; 0% duty | 220 | 250 | 280 | ^ | Note: 0 | | | I _{LED} | 3.3VDC; 100% duty | 15 | 20 | 30 | mA | Note 2 | | LED lifetime | - | I _{LED} =250 mA | - | 70K | ı | hrs | Note 3 | - Note 1: As Fig. 5.1 shown, LED current is constant, 250 mA, controlled by the LED driver when applying 12V. - Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1kHz ~ 10kHz with 3.3V amplitude. - Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 250 mA at 25°C. ### 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25 °C. - In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. $T_a = 25 \, ^{\circ}C, f_{Frame} = 60 \, \text{Hz}, \text{Vdd} = 3.3 \, \text{V}$ | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |-----------------------|-----------------------|---------------------------------|---|------|------|--------|--------|---------| | Brightness o | Brightness of White - | | 4 0° 0 0° | 500 | 600 | - | cd/m² | Note 1 | | Brightness Uniformity | | - | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 70 | - | - | % | Note 2 | | Contrast F | Ratio | CR | I _{LED} = 250mA | 200 | 350 | - | - | Note 3 | | Response | Time | $T_r + T_f$ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | - | 45 | ms | Note 4 | | NTSC R | atio | - | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 60 | - | % | - | | | | θ x | $\phi = 0^{\circ}$, CR ≥ 10 | - | 80 | - | | | | Minusiana Anala | θ x' | $\phi = 180^{\circ}, CR \ge 10$ | - | 80 | - | Dograd | Note F | | | Viewing Angle | | θ y | $\phi = 90^{\circ}, CR \ge 10$ | - | 80 | - | Degree | Note 5 | | | | θ y' | $\phi = 270^{\circ}, CR \ge 10$ | - | 80 | - | | | | | Red X | | 0.58 | 0.63 | 0.68 | | | | | Green | Red | Υ | | 0.26 | 0.31 | 0.36 | | | | | C*** | X | | 0.28 | 0.33 | 0.38 | | | | | Green | Υ | / 00 0 00 | 0.51 | 0.56 | 0.61 | - | | | Chromaticity | Blue | X | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 0.09 | 0.14 | 0.19 | | Note 6 | | | Dide | Υ | | 0.03 | 0.08 | 0.13 | | | | | White | Х | 0.24 0.29 | | 0.34 | | | | | | vviile | Y | | 0.26 | 0.31 | 0.36 | | | Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: $$Brightness\ uniformity = \frac{Min.\ Brightness}{Max.\ Brightness} \times 100\%$$ which is based on the brightness values of the 9 points in active area measured by BM-5 as shown in Fig. 6.2. Fig 6.1 | | \sim | \sim | |------|--------|--------| | -10 | h | ٠, | | 1 14 | v. | _ | JDI Taiwan Inc. Kaohsiung Branch SHEET NO. 7B64PS 2706-TX13D202VM5BAA-3 PAGE Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness of White}{Brightness of Black}$$ Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, Falling time is the period from 10% brightness rising to 90% brightness. Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction. Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. ## 7. BLOCK DIAGRAM Note 1: Signals are CLK and pixel data pairs. ### 8. RELIABILITY TESTS | Test Item | Condition | | |-----------------------------|---|---| | High Temperature | 1) Operating
2) 80 °C | 240 hrs | | Low Temperature | 1) Operating
2) -30 °C | 240 hrs | | High Temperature | 1) Storage
2) 80°C | 240 hrs | | Low Temperature | 1) Storage
2) -30 °C | 240 hrs | | Heat Cycle | 1) Operating 2) -30°C ~80°C 3) 3hrs~1hr~3hrs | 240 hrs | | Thermal Shock | Non-Operating -35 °C ↔85 °C 0.5 hr ↔ 0.5 hr | 240 hrs | | High Temperature & Humidity | 1) Operating 2) 40 °C & 85%RH 3) Without condensation | 240 hrs
(Note3) | | Vibration | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions | 1 hr for each direction | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) ±X, ±Y and ±Z directions | Once for each direction | | ESD | Operating Tip:150 pF,330 Ω Air discharge for glass: ± 8KV Contact discharge for metal frame: ± 8KV | 1) Glass: 9 points 2) Metal frame: 8 points (Note4) | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40° C, the humidity needs to be reduced as Fig. 8.1 shown. Note 4: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition. | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2708-TX13D202VM5BAA-3 | PAGE | 8-1/1 | | |----------------------------------|--------------|------------------------------|------|-------|--| |----------------------------------|--------------|------------------------------|------|-------|--| ### 9. LCD INTERFACE #### 9.1 INTERFACE PIN CONNECTIONS The display interface connector CN1 is FI-SEB20P-HF13E made by JAE and pin assignment is as below: | Pin No. | Signal | Signal | Pin No. | Signal | Signal | | | |---------|-----------------|---------------------------------|---------|------------------|----------------------|--|--| | 1 | V_{DD} | Power Supply for Logic | 11 | IN2- | DO DE DE | | | | 2 | L/R | Horizontal Display mode Control | 12 | IN2+ | B2~B5, DE | | | | 3 | U/D | Vertical Display mode Control | 13 | Vss | Ground | | | | 4 | Vss | Ground | 14 | CLK IN- | B: 101 1 | | | | 5 | INO- | DO DE CO | 15 | CLK IN+ | Pixel Clock | | | | 6 | IN0+ | R0~R5, G0 | 16 | Vss | Ground | | | | 7 | V_{SS} | Ground | 17 | NC | No Connection | | | | 8 | IN1- | C4 C5 D0 D4 | 18 | V _{LED} | Dower Cumply for D/I | | | | 9 | IN1+ | G1~G5, B0~B1 | 19 | V _{LED} | Power Supply for B/L | | | | 10 | Vss | Ground | 20 | DIM | Note 2 | | | Note 1: IN n- and IN n+ (n=0, 1, 2), CLK IN- and CLK IN+ should be wired by twist-pairs or side-by-side FPC patterns, respectively. Note 2: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWN duty. #### 9.2 LVDS INTERFACE - Note 1: LVDS cable impedance should be 100 ohms per signal line when each 2-lines (+, -) is used in differential mode. - Note 2: The recommended transmitter, THC63LVDM83R, is made by Thine or equivalent, which is not contained in the module. - Note 3: The receiver built-in the module is THC63LVDF84B. #### 9.3 LVDS DATA FORMAT DE: Display Enable NA: Not Available # 9.4 TIMING CHART th = 800 CLK (1H) DE 800 1 CLK 25.2M Hz (typ. 100CLK (typ.) thd = 640 CLK (fixed) 60 CLK (typ.) Invalid data Display data Invalid data R [0:5] G [0:5] B [0:5] Fig. 9.1 Horizontal Timing tv = 525 H (60 Hz) Fig. 9.2 Vertical Timing Fig. 9.3 Setup & Hold Time. #### 9.5 TIME TABLE The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60 Hz to define. If 60 Hz is not the aim to set, less than 66 Hz for Vsync is recommended to apply for better performance by other parameter combination as the definitions in section 5.1. #### A. Horizontal and Vertical Timing | Item | | Symbol | Min. | Тур. | Max. | Unit | |------------|---------------|--------|------|------|------|------| | | CLK Frequency | fclk | 21.0 | 25.2 | 29.7 | M Hz | | Horizontal | Display Data | thd | 640 | 640 | 640 | 0114 | | | Cycle Time | th | 700 | 800 | 900 | CLK | | Martinal | Display Data | tvd | 480 | 480 | 480 | 1.1 | | Vertical | Cycle Time | tv | 500 | 525 | 550 | Н | #### B. Setup and Hold Time | Item | | Symbol | Min. | Тур. | Max. | Unit | |------|------------|--------|------|------|------|------| | CLK | Duty | Tcwh | 45 | 50 | 55 | % | | CLK | Cycle Time | Tcph | 34 | 40 | 1 | | | Data | Setup Time | Tdsu | 12 | - | 1 | | | Data | Hold Time | Tdhd | 12 | - | - | ns | | DE | Setup Time | Tesu | 12 | - | 1 | | | DE | Hold Time | Tehd | 12 | - | - | | ### 9.6 LVDS RECEIVER TIMING | RinX = (RinX +) - (RinX -) | (X=0, 1, 2) | |----------------------------|-------------| |----------------------------|-------------| | | Item | Symbol | Min. | Тур. | Max. | Unit | |-----------|-------------------|--------|----------------------------|-----------------------|----------------------------|------| | CLK | Cycle frequency | 1/tcLK | 21 | 25.2 | 29.7 | MHz | | | 0 data position | tRP0 | 1/7* t _{CLK} -0.4 | 1/7* t _{CLK} | 1/7* t _{CLK} +0.4 | | | | 1st data position | tRP1 | -0.4 | 0 | +0.4 | | | DinV | 2nd data position | tRP2 | 6/7* t _{CLK} -0.4 | 6/7* t _{CLK} | 6/7* t _{CLK} +0.4 | | | RinX | 3rd data position | tRP3 | 5/7* t _{CLK} -0.4 | 5/7* t _{CLK} | 5/7* t _{CLK} +0.4 | ns | | (X=0,1,2) | 4th data position | tRP4 | 4/7* t _{CLK} -0.4 | 4/7* t _{CLK} | 4/7* t _{CLK} +0.4 | | | | 5th data position | tRP5 | 3/7* t _{CLK} -0.4 | 3/7* t _{CLK} | 3/7* t _{CLK} +0.4 | | | | 6th data position | tRP6 | 2/7* tclk -0.4 | 2/7* tclk | 2/7* tclk +0.4 | | #### 9.7 SCAN DIRECTION Scan direction is available to be switched as below: L/R: L, U/D: L (Default) L/R: H, U/D: L L/R: L , U/D: H L/R: H, U/D: H #### 9.8 POWER SEQUENCE - Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on. - Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed. ### 9.9 DATA INPUT for DISPLAY COLOR | | | | | Red | Data | | | | (| Green | Data | a | | | | Blue | Data | l | | |-------|------------|-----|----|-----|------|----|-----|-----|----|-------|------|----|-----|-----|----|------|------|----|-----| | Input | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | ВЗ | B2 | B1 | В0 | | color | | MSB | | | | | LSB | MSB | | | | | LSB | MSB | | | | | LSB | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Red (62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Blue | : | : | • | : | : | : | : | : | : | : | : | : | : | : | i | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | ### 10. OUTLINE DIMENSIONS ### 10.1 FRONT VIEW General Tolerance: ±0.5mm Scale: NTS Unit: mm JDI Taiwan Inc. Kaohsiung Branch SHEET No. 7B64PS 2710-TX13D202VM5BAA-3 PAGE 10-1/2 ### 10.2 REAR VIEW General Tolerance : ±0.5mm Scale : NTS Unit : mm | JDI Taiwan Inc. Kaohsiung Branch | SHEET
No. | 7B64PS 2710-TX13D202VM5BAA-3 | PAGE | 10-2/2 | l | |----------------------------------|--------------|------------------------------|------|--------|---| |----------------------------------|--------------|------------------------------|------|--------|---| ### 11. APPEARANCE STANDARD The appearance inspection is performed in a room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 11.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 11.1 #### 11.1 THE DEFINITION OF LCD ZONE JDI Taiwan Inc. Kaohsiung Branch LCD panel is divided into 2 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and metal frame. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 11.2 #### 11.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.4 and Fig. 11.5. | Item | | | Cri | teria | | Applied zone | | | |---------------------------------------|---|-------------|--|---------------------------------|---------|---------------|------------|--| | | Length (mm) | Wid | dth (mm) | Maximum n | umber | Minimum space | | | | 0 | L≦15 | | W≦0.02 | Ignored | | - | Δ. | | | Scratches | L≦15 | 0.02 < | (W≦0.1 | 5 | | - | А | | | | L>15 | 0.1< | W | 0 | | - | | | | Dent | | (| Serious one | is not allowed | | | А | | | Wrinkles in polarizer | | (| Serious one | is not allowed | | | А | | | | Average dia | meter (| (mm) | Ма | ximum r | umber | | | | Dubbles on polarizor | D | ≦0.3 | | | Ignore | ed | ^ | | | Bubbles on polarizer | 0.3 <d< td=""><td></td><td></td><td></td><td colspan="2" rowspan="2">A</td></d<> | | | | A | | | | | | 0.6 <d< td=""><td></td><td></td><td colspan="3">0</td></d<> | | | 0 | | | | | | | | | | | | | | | | | Length (mm) W | | | n (mm) | Max | imum number | Δ. | | | | L≦2.0 | | W | ≦1.5 | | 5 | A | | | 4) Otaina | L>2.0 | | 1.5 <w< td=""><td colspan="3"></td></w<> | | | | | | | 1) Stains | | | Round (E | Oot shape) | | | | | | 2) Foreign Materials 3) Dark Spot | Average diameter | (mm) | Maximu | m number | Mir | imum Space | | | | 3) Dark Spot | D<0.2 | | lgn | ored | | - | ^ | | | | 0.2≦D≦0.6 | | | 4 | | - | A | | | | 0.6 <d< td=""><td></td><td></td><td>0</td><td></td><td>-</td><td colspan="2"></td></d<> | | | 0 | | - | | | | | | Those | wiped out e | wiped out easily are acceptable | | | | | | | | | Area① | Area2 | Max | imum number | А | | | Dot-Defect | Bright dot-defe | defect 0 do | | 0 dot | | 0 dot | | | | | Dark dot-defect | | 2 dot | 3 dot | | 5 dot | (Note 1,2) | | Note 1: The Dot-Defect inspection within A zone (active area) would be divided into area ①, ② as Fig. 11.3 shown. Fig. 11.3 | Fig 11.4 | Fig 11.5 | |----------|----------| |----------|----------| | JDI Taiwan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2711-TX13D202VM5BAA-3 | PAGE | 11-2/3 | | |----------------------------------|--------------|------------------------------|------|--------|--| |----------------------------------|--------------|------------------------------|------|--------|--| | JDI Tai | wan Inc. Kaohsiung Branch | SHEET
NO. | 7B64PS 2711-TX13D202VM5BAA-3 | PAGE | 11-3/3 | |---------|---|--------------|--|-----------|--------| than others. | | , | | | | | than others. | | ern, the dot's brightness must be under 70% | | | | | The defect area of the dot mu
For bright dot-defect, showing | | ttern, the dot's brightness must be over 30% | % brighte | er | | | The defect area of the detaction. | ist he hian | er than half of a dot. | | | #### 12. PRECAUTIONS #### 12.1 PRECAUTIONS OF ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 12.2 PRECAUTIONS OF HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling. - 3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages. - 7) Maximum pressure to the surface of the display must be less than $1.96\,\mathrm{x}\,10^4\,$ Pa. If the area of applied pressure is less than $1\,\mathrm{cm}^2$, the maximum pressure must be less than 1.96N. #### 12.3 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature the response time will be slower than it at 25 °C. In high temperature, the color will be slightly dark and blue compared to original pattern. However these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than \pm 100 mV. #### 12.4 PRECAUTIONS OF STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long term storage temperature is between 10 C° ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container which is shipped from JDI and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. ### 13. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. Fig. 13.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2014 | 4 | | 2015 | 5 | | 2016 | 6 | | 2017 | 7 | | 2018 | 8 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | | |------------|----------|--| | 1∼7 days | 1 | | | 8~14 days | 2 | | | 15~21 days | 3 | | | 22~28 days | 4 | | | 29~31 days | 5 | | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV. No | Item | Remarks | |---------|-------------------|----------| | A | - | - | | В | Driver IC changed | PCN 1058 | 4) The location of the lot mark is on the back of the display shown in Fig. 13.2. #### Label example: Fig. 13.2