FOR MESSRS : _____ DATE : <u>Jul. 26th</u> ,2022 # **CUSTOMER'S ACCEPTANCE SPECIFICATIONS** # TX13D204VM0BAA #### Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|------------------------------|------------| | 1 | COVER | 7B64PS 2701-TX13D204VM0BAA-2 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX13D204VM0BAA-2 | 2-1/1 | | 3 | GENERAL DATA | 7B64PS 2703-TX13D204VM0BAA-2 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX13D204VM0BAA-2 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX13D204VM0BAA-2 | 5-1/1 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX13D204VM0BAA-2 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAM | 7B64PS 2707-TX13D204VM0BAA-2 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX13D204VM0BAA-2 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX13D204VM0BAA-2 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX13D204VM0BAA-2 | 10-1/2~2/2 | | 11 | APPEARANCE STANDARD | 7B64PS 2711-TX13D204VM0BAA-2 | 11-1/3~3/3 | | 12 | PRECAUTIONS | 7B64PS 2712-TX13D204VM0BAA-2 | 12-1/2~2/2 | | 13 | DESIGNATION OF LOT MARK | 7B64PS 2713-TX13D204VM0BAA-2 | 13-1/1 | ACCEPTED BY: _____ PROPOSED BY: Oblack Tsai | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2701-TX13D204M0BAA-2 | PAGE | 1-1/1 | |-----------------|--------------|-----------------------------|------|-------| |-----------------|--------------|-----------------------------|------|-------| # 2. RECORD OF REVISION | DATE | SHEET No. | SUMMARY | |------------|------------------|---| | Jul.26,'22 | | 11.2 Revised LCD APPEARANCE SPECIFICATION | | , | TX13D204VM0BAA-2 | | | | PAGE 11-2/3~3/3 | # 3. GENERAL DATA #### 3.1 DISPLAY FEATURES This module is a 5" WVGA of 16:9 format of amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially .This display is RoHS compliant , and COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX13D204VM0BAA | |-------------------------|---| | Module Dimensions | 121.0(W)mm x 80.0(H)mm x 7.1(D)mm (W/O component & FPC) | | LCD Active Area | 108.0(W)mm x 64.8(H)mm | | Pixel Pitch | 0.135(W)mm x 0.135(H)mm | | Resolution | 800x3(R,G,B)(W)x480(H) Dots | | Color Pixel Arrangement | R, G, B Vertical stripe | | LCD Type | Transmissive Color TFT; Normally Black | | Display Type | Active Matrix | | Number of Colors | 16.7M Colors (8-bit RGB) | | Backlight | Light Emitting Diode (LED) | | Weight | 90 g (typ.) | | Interface | 50pin LVDS | | Power Supply Voltage | 3.3V for LCD driving ; 21 V for Backlight | | Power Consumption | 0.5 W for LCD ; 3.36 W for B/L | | Viewing Direction | Super Wide version | | JDI TAIWAN INC | SHEET
NO. | 7B64PS 2703-TX13D204M0BAA-2 | PAGE | 3-1/1 | |----------------|--------------|-----------------------------|------|-------| |----------------|--------------|-----------------------------|------|-------| #### 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|------------------|------|------|------|---------| | Supply Voltage | V_{DD} | 0.3 | 4.0 | ٧ | - | | Input Voltage of Logic | Vı | 0.3 | 4.0 | ٧ | Note 1 | | Operating Temperature | T _{op} | -30 | 85 | °C | Note 2 | | Storage Temperature | T _{st} | -40 | 90 | °C | Note 2 | | Backlight Input Voltage | V _{LED} | - | 28 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as DCLK, DE, and RGB data bus. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than 25 $\,^\circ C\,.$ - -Operating under high temperature will shorten LED lifetime. | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2704-TX13D204M0BAA-2 | PAGE | 4-1/1 | |-----------------|--------------|-----------------------------|------|-------| # 5. ELECTRICAL CHARACTERISTICS #### 5.1 LCD CHARACTERISTICS $T_a = 25 \, ^{\circ}C, \, \text{Vss} = 0\text{V}$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |-----------------------------|-----------------|-----------------------|--------------------|------|--------------------|------|---------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | land Voltage of Lania | ., | "H" level | 0.7V _{DD} | - | V_{DD} | | NI. (4 | | Input Voltage of Logic | Vı | "L" level | 0 | - | 0.3V _{DD} | V | Note 1 | | Power Supply Current | I _{DD} | V _{DD} =3.3V | - | - | 150 | mA | Note 2 | | Frame Frequency | $f_{\it Frame}$ | - | 55 | 60 | 65 | Hz | - | | CLK Frequency $f_{\it CLK}$ | | - | 23.2 | 27.7 | 33.5 | MHz | - | - Note 1: The rating is defined for the signal voltages of the interface such as DE, DCLK and RGB data bus. - Note 2: An all white check pattern is used when measuring I_{DD} . f_{Frame} is set to 60 Hz. - Note 3: VCM 1.2V is common mode voltage of LVDS transmitter and receiver. ### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, ^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|------------------|---------------------------------|------|------|------|------|---------| | LED Input Voltage | V_{LED} | - | 19 | - | 23.8 | V | Note 1 | | LED Forward Current | I _{LED} | per LED | - | 80 | - | mA | - | | LED lifetime | - | I _{LED} =80 mA/per LED | 1 | 70K | 1 | hrs | Note 2 | - Note 1: Fig. 5.1 shows the LED backlight circuit. V_{LED} and I_{LED} is many-to-one relationship, the above V_{LED} range is defined to obtain 80mA per LED chain. - Note 1: The estimated lifetime is specified as the time to reduce 50% brightness by applying 80 mA at 25° C. Fig 5.1 | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2705-TX13D204M0BAA-2 | PAGE | 5-1/1 | |-----------------|--------------|-----------------------------|------|-------| |-----------------|--------------|-----------------------------|------|-------| #### 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The ambient temperature is 25°C. - In the dark room less than 100 lx, the equipment has been set for the measurements as shown in Fig 6.1. | | | | | | T_a | $=$ 25 °C, f_{I} | $r_{rame} = 60 \text{Hz}$ | VDD = 3.3V | |--------------------------|-----------|-------------|---|------|-------|--------------------|----------------------------|------------| | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | | Brightness o | f White | 1 | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 1000 | 1300 | - | cd/m ² | Note 1 | | Brightness U | niformity | - | I _{LED} =80 mA | 70 | 70 | - | % | Note 2 | | Contrast F | Ratio | CR | (per LED) | 800 | 1300 | - | - | Note 3 | | Response
(Rising + Fa | | $T_r + T_f$ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | - | 25 | ms | Note 4 | | NTSC R | atio | - | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 70 | - | % | - | | | | θx | $\phi = 0^{\circ}, CR \ge 10$ | - | 80 | - | | | | \/iaia.a. A | | $\theta x'$ | $\phi = 180^{\circ}, CR \ge 10$ | - | 80 | - | D | Note F | | Viewing A | ingie | θ y | $\phi = 90^\circ$, CR ≥ 10 | - | 80 | - | Degree | Note 5 | | | | θ y' | $\phi = 270^\circ, CR \ge 10$ | - | 80 | - | | | | | D. I | X | | 0.60 | 0.64 | 0.68 | | | | | Red | Υ | | 0.29 | 0.33 | 0.37 | | | | | 0 | X | | 0.28 | 0.32 | 0.36 | | | | Color | Green | Y | | 0.58 | 0.62 | 0.66 | | | | Chromaticity | Blue | Х | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 0.11 | 0.15 | 0.18 | - | Note 6 | | | Diue | Υ | | 0.02 | 0.06 | 0.10 | | | | | \//hito | Х | | 0.27 | 0.31 | 0.35 | | | | | White | Υ | | 0.28 | 0.32 | 0.36 | | | Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: $$Brightness \ uniformity = \frac{Min. \ Brightness}{Max. \ Brightness} \times 100\%$$ which is based on the brightness values of the 9 points in active area measured by BM-5 as shown in Fig. 6.2. Fig 6.1 Fig 6.2 | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2706-TX13D204M0BAA-2 | PAGE | 6-1/2 | |-----------------|--------------|-----------------------------|------|-------| |-----------------|--------------|-----------------------------|------|-------| Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness of White}{Brightness of Black}$$ Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness rising to 10% brightness. Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The display is super wide viewing angle version, so that the best optical performance can be obtained from every viewing direction. Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. # 7. BLOCK DIAGRAM Note 1: Signals are DCLK, DE, and RGB data bus. # 8. RELIABILITY TESTS | Test Item | Condition | | |--------------------------------|---|---| | High Temperature | 1) Operating
2) 85 °C | 240 hrs | | Low Temperature | 1) Operating
2) -30 °C | 240 hrs | | High Temperature | 1) Storage
2) 90°C | 240 hrs | | Low Temperature | 1) Storage
2) -40 °C | 240 hrs | | Thermal Shock | 1) Non-Operating 2) -40 °C ↔85 °C 3) 0.5 hr ↔ 0.5 hr | 30 cycles | | High Temperature &
Humidity | 1) Operating 2) 60 °C & 90%RH 3) Without condensation | 240 hrs | | Vibration | 1) Non-Operating 2) 20~200 Hz 3) 2G 4) X, Y, and Z directions | 1 hr for each direction | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) ±X, ±Y and ±Z directions | Once for each direction | | ESD | 1) Operating 2) Tip: 150 pF, 330 Ω 3) Air discharge for glass: \pm 8KV 4) Contact discharge for metal frame: \pm 8KV | 1) Glass: 9 points
2) Metal frame: 8 points
(Note3) | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: All pins of LCD interface (CN1) have been tested by \pm 100V contact discharge of ESD under non-operating condition. | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2708-TX13D204M0BAA-2 | PAGE | 8-1/1 | |-----------------|--------------|-----------------------------|------|-------| |-----------------|--------------|-----------------------------|------|-------| # 9. LCD INTERFACE #### 9.1 INTERFACE PIN CONNECTIONS The display interface connector CN1 is pitch 0.5mm 50pin and pin assignment is as below: | Pin No. | Symbol | Signal | Pin No. | Symbol | Signal | | | | |---------|---------|---------------|---------|----------|--|--|--|--| | 1 | LED C1 | LED Cathode 1 | 26 | CLK IN- | Clock | | | | | 2 | LED C2 | LED Cathode 2 | 27 | Vss | Ground | | | | | 3 | NC | No Connection | 28 | RST | Reset pin ("L" active) | | | | | 4 | LED A | LED Anode | 29 | STBYB | Standby mode setting pin ("H" Display ON; "L Display OFF") | | | | | 5 | | | 30 | Vss | Ground | | | | | 6 | NC | No Connection | 31 | L/R | Horizontal Display mode Control (Note1) | | | | | 7 | | | 32 | U/D | Vertical Display mode Control (Note 1) | | | | | 8 | Vss | Ground | 33 | | | | | | | 9 | | | 34 | | | | | | | 10 | NO | No Consortion | 35 | | | | | | | 11 | NC | No Connection | 36 | | | | | | | 12 | Vss | Ground | 37 | | | | | | | 13 | IN3+ | Divel Date | 38 | Vss | Ground | | | | | 14 | IN3- | Pixel Data | 39 | | | | | | | 15 | Vss | Ground | 40 | | | | | | | 16 | IN2+ | Divel Date | 41 | | | | | | | 17 | IN2- | Pixel Data | 42 | | | | | | | 18 | Vss | Ground | 43 | | | | | | | 19 | IN1+ | Divid Data | 44 | NC | No Connection | | | | | 20 | IN1- | Pixel Data | 45 | | | | | | | 21 | Vss | Ground | 46 | V_{DD} | Supply Voltage | | | | | 22 | IN0+ | Divel Date | 47 | | | | | | | 23 | INO- | Pixel Data | 48 | NC | No Connection | | | | | 24 | Vss | Ground | 49 | | Crawad | | | | | 25 | CLK IN+ | Clock | 50 | Vss | Ground | | | | Note1: Refer to the section "9.3 SCAN DIRECTION " |--| #### 9.2 TIMING CHART #### (1) LVDS Receiver Timing (Interface of TFT module) RinX=(RinX+)-(RinX-) (X=0,1,2) | | Item | Symbol | Min. | Тур. | Max. | Unit | |----------------------|-------------------|---------------------|--------------------------|----------------------|--------------------------|------| | DCLK RinX (X=0,1,2) | FREQUENCY | 1/ t _{CLK} | 23.2 | 27.7 1) | 33.5 | MHz | | | 1st data position | t _{RP1} | -0.4 | 0 | 0.4 | | | | 0 data position | t _{RP0} | 1/7t _{CLK} -0.4 | 1/7*t _{CLK} | 1/7t _{CLK} +0.4 | | | | 6th data position | t _{RP6} | 2/7t _{CLK} -0.4 | 2/7*t _{CLK} | 2/7t _{CLK} +0.4 | | | | 5th data position | t _{RP5} | 3/7t _{CLK} -0.4 | 3/7*t _{CLK} | 3/7t _{CLK} +0.4 | | | | 4th data position | t _{RP4} | 4/7t _{CLK} -0.4 | 4/7*t _{CLK} | 4/7t _{CLK} +0.4 | ns | | | 3rd data position | t _{RP3} | 5/7t _{CLK} -0.4 | 5/7*t _{CLK} | 5/7t _{CLK} +0.4 | | | | 2nd data position | t _{RP2} | 6/7t _{CLK} -0.4 | 6/7*t _{CLK} | 6/7t _{CLK} +0.4 | | Note 1: fv=60Hz #### (2) LVDS Data Mapping 1 cycle CLK IN-CLK IN+ IN0+ R0 R5 R3 R2 G0 R4 R1 R0 G0 INO-IN1+ G2 G1 В1 В0 G5 G4 G3 G2 G1 В1 IN1-IN2+ ВЗ B2 NA В5 В4 ВЗ B2 DE NA DE IN2-IN3+ R7 R6 NA В7 В6 G7 G6 R7 R6 NA IN3- **PAGE** # (3) Timing converter timing (Input timing for transmitter) Tv TvD TH THD DTMG DCLK The timings except mentioned above are referred to the specifications of your transmitter. | Item DCLK Cycle time | | Symbol | Min. | Тур. | Max. | Unit | Remarks | |-----------------------|-------------------------|-----------------|------|------|------|------|---------| | | | Tc | 29.9 | 36.1 | 43.1 | ns | | | l la viza estal | Horizontal period | T _H | 862 | 884 | 920 | Tc | | | Horizontal | Horizontal width-Active | T _{HD} | | 800 | | Tc | | | Vertical | Vertical period | Tv | 490 | 523 | 560 | Тн | | | | Vertical width-Active | T _{VD} | 480 | | | Тн | | | | Frame frequency | f∨ | 55 | 60 | 65 | Hz | | JDI TAIWAN INC. DATA SIGNALS #### 9.3 SCAN DIRECTION Scan direction is available to be switched as below: L/R: H, U/D: H (Default) L/R: L , U/D: H L/R: H , U/D: L L/R: L , U/D: L # 9.5 DATA INPUT for DISPLAY COLOR | | | Red Data | | | | | | (| Greer | n Dat | а | | | Blue Data | | | | | | | | | | | | |-------|------------|----------|----|----|----|----|----|----|----------|-------|----|----|----|-----------|----|----|----------|-----|----|----|----|----|----|----|-----| | `Inp | out color | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | | | | MSB | | | | | | | LSB | MSB | | | | | | | LSB | MSB | | | | | | | LSB | | | Black | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | | | Black | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | : | : | | : | : | : | : | : | : | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | : | : | : | : | : | : | : | : | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | | | Blue(1) | 0 | 1 | | | Blue(2) | 0 | 1 | 0 | | Blue | : | | | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | <u>I</u> | <u> </u> | | | l | l | | | <u> </u> | | | | | | l | | <u> </u> | | | l | | | l | | | | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2709-TX13D204M0BAA-2 | PAGE | 9-7/7 | | |-----------------|--------------|-----------------------------|------|-------|--| |-----------------|--------------|-----------------------------|------|-------|--| # 10. OUTLINE DIMENSIONS 10.1 FRONT VIEW 121±0.3 (LO General Tolerance:±0.5mm Scale : NTS Unit : mm JDI TAIWAN INC. | SHEET | 7B64PS 2710-TX13D204M0BAA-2 | PAGE | 10-1/2 #### 10.2 RAER VIEW General Tolerance:±0.5mm Scale : NTS Unit : mm | JDI TAIWAN INC. | SHEET
No. | 7B64PS 2710-TX13D204M0BAA-2 | PAGE | 10-2/2 | ١ | |-----------------|--------------|-----------------------------|------|--------|---| |-----------------|--------------|-----------------------------|------|--------|---| #### 11. APPEARANCE STANDARD The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. ambient temperature is 25 °C±5 °C. - The viewing zone is defined with angle θ shown in Fig. 11.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 11.1 #### 11.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 11.2 #### 11.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4. | Item | | С | riteria | | | Applied zone | | | |------------------------|---|---|---|-------------|---------------|---------------|--|--| | | Length (mm) | Width (mm) | Maximum nu | umber | Minimum space | | | | | Scratches | Ignored | W≦0.05 | Ignored | b | - | ^ | | | | Scratches | 1≦L≦5.0 | $0.05 < W \le 0.2$ | 4 | | - | Α | | | | | - | 0.2 <w< td=""><td>Not allow</td><td>ed .</td><td>-</td><td></td></w<> | Not allow | ed . | - | | | | | Dent | | Serious one is not allowed | | | | | | | | Wrinkles in polarizer | | Serious on | e is not allowed | | | Α | | | | | Average diam | eter (mm) | Max | kimum n | umber | | | | | Dubbles on velevines | D≦ | 0.2 | | Ignore | ed | ^ | | | | Bubbles on polarizer | 0.2 < D≦ | ≦0.5 | | 3 | | Α | | | | | 0.5 <d< td=""><td></td><td>1</td><td>Not allov</td><td>wed</td><td></td></d<> | | 1 | Not allov | wed | | | | | | | Filamentou | ıs (Line shape) | | | | | | | | Length (mm) | Wid | th (mm) | Max | imum number | | | | | | - | | W≦0.05 | | Ignored | A, B | | | | | 0.3≦L≦0.7 | 0.05 | <w≦0.1< td=""><td></td><td>4</td><td></td></w≦0.1<> | | 4 | | | | | | 0.7 < L | 0.1 | <W | N | lot allowed | | | | | 1) Stains | | | | | | | | | | 2) Foreign Materials | Average diameter (n | nm) | Maximum | numbe | r | | | | | 3) Bright / Dark Spot | D≦0.2 | Brig | ıht Spot | | | | | | | | D <u>≥</u> 0.2 | Da | rk Spot | | Ignored | A, B | | | | | 0.2 < D ≤ 0.4 | | 3 | | | | | | | | 0.4 <d< td=""><td></td><td colspan="5">Not allowed</td></d<> | | Not allowed | | | | | | | | In total | | 6 | | | | | | | | | Those wiped out | easily are accept | able | | | | | | | | - | Гуре | Max | imum number | | | | | D 1 D 1 1 | Bright dot-defect | : | 1 dot | | 0 | | | | | Dot-Defect
(Note 1) | Dark dot-defect | | 1 dot | dot | | Α | | | | (14010-1) | Dark dot delect | 2 adj | acent dot | lot allowed | | | | | | | Minir | | | | | | | | | Mura | | Invisible thro | ugh 2% ND filte | er | | A
(Note 2) | | | | JDI TAIWAN INC. | SHEET
NO. | 7B64PS 2711-TX13D204VM0BAA-2 | PAGE | 11-2/3 | | |-----------------|--------------|------------------------------|------|--------|--| Note 1: The definitions of dot defect are as below: - For bright dot-defect, showing black pattern, defect size over 1/2 dot area is defined. - For dark dot-defect, showing white pattern, defect size over 1/2 dot area is defined. - The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot. - The definition of adjacent dot is shown as Fig. 11.5. Fig. 11.5 Note 2: The inspection method with ND Filter is to hold it in front of the panel around 1 cm and inspect the panel with 35±5 cm distance for 1 second. #### 12. PRECAUTIONS #### 12.1 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 12.2 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it. - 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages. - 7) Maximum pressure to the surface of the display must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 cm^2 , the maximum pressure must be less than 1.96×10^4 Pa. If the area of adding pressure is less than 1 #### 12.3 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than ± 100 mV. | SHEET | | |-------|--| | NO. | | #### 12.4 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long term storage temperature is between 10 °C ~35 °C and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. SHEET NO. #### 13. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. Fig. 13.1 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2022 | 2 | | 2023 | 3 | | 2024 | 4 | | 2025 | 5 | | 2026 | 6 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | |------------|----------| | 1~7 days | 1 | | 8~14 days | 2 | | 15~21 days | 3 | | 22~28 days | 4 | | 29~31 days | 5 | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV No. | ITEM | REMARKS | |---------|------|---------| | Α | - | - | 4) The location of the lot mark is on the back of the display shown in Fig. 13.2. Label example: Fig. 13.2