LVNET EMBEDDED ## **DATASHEET** TX14D26VM1BPA Kaohsiung Opto-Electronics Inc. | FOR MESSRS: | DATE : May 13 th ,201 | |---------------|----------------------------------| | FUR IVIESSKS. | DATE INIAY 13 ,2013 | ## CUSTOMER'S ACCEPTANCE SPECIFICATIONS ## TX14D26VM1BPA ## Contents | No. | ITEM | SHEET No. | PAGE | |-----|----------------------------|-----------------------------|------------| | 1 | COVER | 7B64PS 2701-TX14D26VM1BPA-7 | 1-1/1 | | 2 | RECORD OF REVISION | 7B64PS 2702-TX14D26VM1BPA-7 | 2-1/2~2/2 | | 3 | GENERAL DATA | 7B64PS 2703-TX14D26VM1BPA-7 | 3-1/1 | | 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX14D26VM1BPA-7 | 4-1/1 | | 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX14D26VM1BPA-7 | 5-1/1 | | 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX14D26VM1BPA-7 | 6-1/2~2/2 | | 7 | BLOCK DIAGRAME | 7B64PS 2707-TX14D26VM1BPA-7 | 7-1/1 | | 8 | RELIABILITY TESTS | 7B64PS 2708-TX14D26VM1BPA-7 | 8-1/1 | | 9 | LCD INTERFACE | 7B64PS 2709-TX14D26VM1BPA-7 | 9-1/7~7/7 | | 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX14D26VM1BPA-7 | 10-1/1 | | 11 | TOUCH PANEL | 7B64PS 2711-TX14D26VM1BPA-7 | 11-1/2~2/2 | | 12 | APPEARANCE STANDARD | 7B64PS 2712-TX14D26VM1BPA-7 | 12-1/4~4/4 | | 13 | PRECAUTIONS | 7B64PS 2713-TX14D26VM1BPA-7 | 13-1/2~2/2 | | 14 | DESIGNATION OF LOT MARK | 7B64PS 2714-TX14D26VM1BPA-7 | 14-1/1 | ACCEPTED BY: _____ PROPOSED BY: Oblack Tsai KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2701-TX14D26VM1BPA-7 PAGE 1-1/1 ## 2. RECORD OF REVISION | DATE | SHEET No. | SUMMARY | | | | | |-------------|----------------------------------|------------------------|--------------|----------|-----------------------|---| | Jul.19,'13 | 7B64PS 2709- | | ACE PIN CO | ONNECTIO | ONS | | | | TX14D26VM1BPA-2 | Correction | : | | | 1 | | | PAGE 9-1/7 | | Pin No. | Symbol | | Signal | | | | | 4 | L/R | H: Righ
L: Left t | t to left (Default)
to right | | | | | | | \downarrow | | | | | | Pin No. | Symbol | | Signal | | | | | 4 | L/R | H: Left
L: Righ | to right (Default)
t to left | | Oct.21,'13 | 7B64PS 2706- | | CHARACT | ERISTICS | 1 | | | | TX14D26VM1BPA-3
PAGE 6-1/2 | Correction | Fig 6.2 | | | | | | 7B64PS 2711- | 11 TOUCH | | | | | | | TX14D26VM1BPA-3
PAGE 11-1/2 | 11.2 ELE
Correction | CTRICAL CI | HARACTE | RISTICS | | | | | | | Item | | Specification | | | | | 0. | | X-axis | 350Ω~1070Ω | | | | | Circuit resi | stance | Y-axis | 210Ω~560Ω | | | | | | | | | | | | | | Item | | Specification | | | | | | | X-axis | 350Ω~1070Ω | | | | | Circuit resi | stance | Y-axis | 280Ω~560Ω | | Jan. 10,'14 | 7B64PS 2712 – | 12.2 LCD | APPEARAN | CE SPECI | | | | Jan. 10, 14 | TX14D26VM1BPA-4
PAGE 12 – 3/4 | | : LED BACK | | | . | | Aug. 29,'16 | 7B64PS 2711- | 11 TOUCH | | | | | | | TX14D26VM1BPA-5 | 11.2 ELE
Revised : | CTRICAL CI | HARACTE | RISTICS | | | | PAGE 11-1/2 | | | Item | | Specification | | | | | | | | | | | | | | | X-axis | 350Ω~1070Ω | | | | | Circuit res | stance | X-axis
Y-axis | | | | | | Circuit resi | stance | Y-axis | 350Ω~1070Ω | | | | | Circuit res | | | 350 Ω ~1070 Ω
280 Ω ~560 Ω | | | | | Circuit res | stance | Y-axis | 350Ω ~ 1070Ω 280Ω ~ 560Ω Specification | | | | | Circuit res | Item | Y-axis
↓
X-axis | 350Ω ~ 1070Ω 280Ω ~ 560Ω Specification 300Ω ~ 1100Ω | | | | | | Item | Y-axis | 350Ω ~ 1070Ω 280Ω ~ 560Ω Specification | ## 2. RECORD OF REVISION | DATE | SHEET No. | SUMMARY | | | | | | | |------------|-----------------|---------------|-----------------------------|---------|--|--|--|--| | May 13,'19 | 7B64PS 2714- | 14.DESIGNATIO | ON OF LOT MARK | | | | | | | | TX14D26VM1BPA-7 | Added | | | | | | | | | PAGE 14-1/1 | REV No. | ITEM | LOT No. | | | | | | | | А | - | - | | | | | | | | В | Backlight Components Change | PCN1016 | | | | | | | | | • | ## 3. GENERAL DATA ### 3.1 DISPLAY FEATURES This module is a 5.7" QVGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display. | Part Name | TX14D26VM1BPA | |-------------------------|---| | Module Dimensions | 131.0(W) mm x 102.2(H) mm x 8.6 (D) mm typ. | | LCD Active Area | 115.2(W) mm x 86.4(H) mm | | Pixel Pitch | 0.36 (W) mm x 0.36 (H) mm | | Resolution | 320 x 3(RGB)(W) x 240(H) dots | | Color Pixel Arrangement | R, G, B Vertical stripe | | LCD Type | Transmissive Color TFT; Normally White | | Display Type | Active Matrix | | Number of Colors | 262k Colors | | Backlight | 21 LEDs (3 series x 7) | | Weight | 150g | | Interface | C-MOS; 18-bit RGB; 40 pins | | Power Supply Voltage | 3.3V for LCD; 12V for Backlight | | Power Consumption | 0.27 W for LCD;1.68 W for Backlight | | Viewing Direction | 6 o'clock (without image inversion and least brightness change) 12 o'clock (contrast peak located at) | | Touch Panel | 4 wire resistive type; Film on Glass; Antiglare Surface | ## 4. ABSOLUTE MAXIMUM RATINGS | Item | Symbol | Min. | Max. | Unit | Remarks | |-------------------------|-----------|------|----------------------|----------|---------| | Supply Voltage | V_{DD} | -0.3 | 5 | V | - | | Input Voltage of Logic | VI | -0.3 | V _{DD} +0.3 | V | Note 1 | | Operating Temperature | Тор | -20 | 70 | °C | Note 2 | | Storage Temperature | Tst | -30 | 80 | °C | Note 2 | | Backlight Input Voltage | V_{LED} | - | 14.5 | V | - | - Note 1: The rating is defined for the signal voltages of the interface such as CLK, DE, Hsync, Vsync, MODE, U/D, L/R and RGB data bus. - Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed: - Background color, contrast and response time would be different in temperatures other than $25^{\circ}\mathrm{C}$. - Operating under high temperature will shorten LED lifetime. | SHEET | | |-------|--| | NO. | | ## 5. ELECTRICAL CHARACTERISTICS #### 5.1 LCD CHARACTERISTICS $T_a = 25$ °C, Vss = 0V | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |------------------------|----------------------------|-----------------------|--------------------|-------|--------------------|------|-----------| | Power Supply Voltage | V_{DD} | - | 3.0 | 3.3 | 3.6 | V | - | | Input Voltage of Logic | | "H" level | 0.7V _{DD} | - | V_{DD} | | NI a fa d | | Input Voltage of Logic | V _I | "L" level | V_{SS} | - | 0.3V _{DD} | V | Note 1 | | Power Supply Current | IDD | V _{DD} =3.3V | - | 57 | 75 | mA | Note 2 | | Vsync Frequency | f_{v} | - | 54 | 60 | 66 | Hz | - | | Hsync Frequency | $f_{\scriptscriptstyle H}$ | - | 14.20 | 15.68 | 17.35 | KHz | - | | CLK Frequency | f_{CLK} | - | 5.79 | 6.4 | 7.08 | MHz | - | Note 1: The rating is defined for the signal voltages of the interface such as DE, CLK, MODE, U/D, L/R and RGB data bus. Note 2: An all black check pattern is used when measuring I_{DD} . f_v is set to 60 Hz. #### 5.2 BACKLIGHT CHARACTERISTICS $T_a = 25 \, ^{\circ}C$ | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---------------------|------------------|-----------|------|------|------|------|---------| | LED Input Voltage | V_{LED} | - | 11.5 | 12 | 12.5 | V | Note1 | | LED Forward Current | I _{LED} | - | 110 | 140 | 170 | mA | Note 1 | | LED lifetime | - | 140 mA | - | 40K | - | hrs | Note 2 | Note 1: As Fig. 5.1 shown, LED current is around 140 mA when applying 12V V_{LED} to the LED circuit. Note 2: The estimated lifetime is specified as the time to reduce 50% brightness by applying 140 mA at $25\,^{\circ}\mathrm{C}$. Fig. 5.1 ## 6. OPTICAL CHARACTERISTICS The optical characteristics are measured based on the conditions as below: - Supplying the signals and voltages defined in the section of electrical characteristics. - The backlight unit needs to be turned on for 30 minutes. - The ambient temperature is 25 °C. - In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1. $T_a = 25 \, ^{\circ}C, f_v = 60 \, \text{Hz}, \, \text{V}_{\text{DD}} = 3.3 \, \text{V}$ | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Remarks | |---|---------------|-------------|---|------|------|------|-------------------|---------| | Brightness of White Brightness Uniformity | | - | 4 00 0 00 | 500 | 640 | - | cd/m ² | Note 1 | | | | - | $\phi = 0^{\circ}, \theta = 0^{\circ},$ | 70 | - | - | % | Note 2 | | Contrast F | Ratio | CR | I _{LED} = 140 mA | 400 | 800 | - | - | Note 3 | | Response
(Rising + F | | $T_r + T_f$ | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 30 | - | ms | Note 4 | | NTSC R | atio | - | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | - | 60 | - | % | - | | | | θ x | $\phi = 0^{\circ}$, CR ≥ 10 | 70 | 80 | - | | | |) (i a coning as A | | $\theta x'$ | $\phi = 180^{\circ}, CR \ge 10$ | 70 | 80 | - | _ | Note 5 | | viewing A | Viewing Angle | | $\phi = 90^{\circ}, CR \ge 10$ | 70 | 80 | - | Degree | Note 5 | | | | θ y' | $\phi = 270^{\circ}, CR \ge 10$ | 45 | 60 | - | | | | | Dod | Х | | 0.59 | 0.64 | 0.69 | | | | | Red | Υ | | 0.30 | 0.35 | 0.40 | | | | | 0.000 | X | | 0.32 | 0.37 | 0.42 | | | | Color | Green | Y | | 0.54 | 0.59 | 0.64 | - | Note 6 | | Chromaticity | Blue | Х | $\phi = 0^{\circ}, \theta = 0^{\circ}$ | 0.10 | 0.15 | 0.20 | | | | | Dide | Υ | | 0.05 | 0.10 | 0.15 | | | | | White | Х | | 0.26 | 0.31 | 0.38 | | | | | vviile | Y | | 0.29 | 0.34 | 0.39 | | | Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value. Note 2: The brightness uniformity is calculated by the equation as below: $$Brightness\ uniformity = \frac{Min.\ Brightness}{Max.\ Brightness} \times 100\%$$, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2. KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2706-TX14D26VM1BPA-7 PAGE 6-1/2 Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation: $$CR = \frac{Brightness\ of\ White}{Brightness\ of\ Black}$$ Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 90% brightness to 10% brightness when the data is from white to black. Oppositely, Falling time is the period from 10% brightness rising to 90% brightness. Fig 6.3 Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY. The viewing direction of this display is 6 o'clock, which means that a photograph with gray scale would not be reversed in color and the brightness change would be less from this direction. However, the best contrast peak would be located at 12 o'clock. Fig 6.4 Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2. ## 7. BLOCK DIAGRAM Note 1: Signals are CLK, Hsync, Vsync, DE, MODE, U/D, L/R and RGB data bus. ## 8. RELIABILITY TESTS | Test Item | Condition | | | | | |-----------------------------|---|-------------------------|--|--|--| | High Temperature | 1) Operating
2) 70 °C | 240 hrs | | | | | Low Temperature | 1) Operating
2) -20°C | 240 hrs | | | | | High Temperature | 1) Storage
2) 80°C | 240 hrs | | | | | Low Temperature | 1) Storage | | | | | | Heat Cycle | 1) Operating 2) -20°C ~70°C 3) 3hrs~1hr~3hrs | 240 hrs | | | | | Thermal Shock | 1) Non-Operating
2) -35 °C ↔ 85 °C
3) 0.5 hr ↔ 0.5 hr | 240 hrs | | | | | High Temperature & Humidity | 1) Operating 2) 40 °C & 85%RH 3) Without condensation (Note3) | 240 hrs | | | | | Vibration | 1) Non-Operating | | | | | | Mechanical Shock | 1) Non-Operating 2) 10 ms 3) 50G 4) $\pm X, \pm Y$ and $\pm Z$ directions | Once for each direction | | | | | ESD | 1) Operating | | | | | - Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests. - Note 2: The display is not guaranteed for use in corrosive gas environments. - Note 3: Under the condition of high temperature & humidity, if the temperature is higher than 40 °C, the humidity needs to be reduced as Fig. 8.1 shown. - Note 4: All pins of LCD interface(CN1) have been tested by ±100V contact discharge of ESD under non-operating condition. KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2708-TX14D26VM1BPA-7 PAGE ## 9. LCD INTERFACE ### 9.1 INTERFACE PIN CONNECTIONS The display interface connector (CN1) is FA5B040HP1 (JAE), and Pin assignment is as below: | Pin No. | Symbol | Signal | Pin No. | Symbol | Signal | |---------|----------|---|---------|--------|---| | 1 | V_{DD} | Supply voltage | 21 | G4 | Green data | | 2 | V_{DD} | Supply voltage | 22 | G3 | Green data | | 3 | U/D | H: Up to down (Default) L: Down to up | 23 | GND | Ground | | 4 | L/R | H: Left to right (Default) L: Right to left | 24 | G2 | Green data | | 5 | Vsync | Vertical synchronous signal | 25 | G1 | Green data | | 6 | DE | Data enable | 26 | G0 | Green data (LSB) | | 7 | GND | Ground | 27 | GND | Ground | | 8 | CLK | Dot clock | 28 | R5 | Red data (MSB) | | 9 | GND | Ground | 29 | R4 | Red data | | 10 | Hsync | Horizontal synchronous signal | 30 | R3 | Red data | | 11 | GND | Ground | 31 | GND | Ground | | 12 | B5 | Blue data (MSB) | 32 | R2 | Red data | | 13 | B4 | Blue data | 33 | R1 | Red data | | 14 | В3 | Blue data | 34 | R0 | Red data (LSB) | | 15 | GND | Ground | 35 | MODE | H: Data enable mode (Default) L: Synchronous mode | | 16 | B2 | Blue data | 36 | GND | Ground | | 17 | B1 | Blue data | 37 | XT | Top terminal of touch panel | | 18 | В0 | Blue data (LSB) | 38 | YL | Left terminal of touch panel | | 19 | GND | Ground | 39 | XB | Bottom terminal of touch panel | | 20 | G5 | Green data (MSB) | 40 | YR | Right terminal of touch panel | The backlight connector (CN2) is BHR-03VS-1 made by JST, and pin assignment is as below: | Pin No. | Symbol | Signal | | | | |---------|-----------|---------------|--|--|--| | 1 | V_{LED} | 12VDC | | | | | 2 | N.C. | No connection | | | | | 3 | GND | Ground | | | | | SHEET | | |-------|--| | NO | | #### 9.2 TIMING CHART #### A. SYNCHRONOUS MODE Fig. 9.1 Horizontal Timing of Synchronous Mode Note 1: CLK's falling edge is the time to latch data and count (thp + thb), therefore, data sending and Hsync's falling edge should start when CLK's rise edge. Fig. 9.2 Vertical Timing of Synchronous Mode Note 2: Vsync's falling edge needs to start with Hsync's falling edge simultaneously to count (tvp + tvb). Fig. 9.3 Horizontal Timing of DE Mode Fig. 9.4 Vertical Timing of DE Mode ## C. CLOCK AND DATA INPUT TIMING Fig. 9.5 Setup & Hold Time of Data and DE signal. Fig. 9.6 Setup & Hold Time of Hsync and Vsync signal. ## 9.3 TIME TABLE The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) = 60 Hz to define. If 60 Hz is not the aim to set, $54\sim66 \text{ Hz}$ for Vsync is recommended to apply for better performance by other parameter combination as the definitions in section 5.1. #### A. SYNCHRONOUS MODE | Item | | Symbol | Min. | Тур. | Max. | Unit | |-----------|----------------------------|-----------|------|------|------|------| | | CLK Frequency | fclk | 6.2 | 6.4 | 12.1 | M Hz | | | Display Data | thd | 320 | 320 | 320 | | | l lavra a | Cycle Time | th | 406 | 408 | 560 | | | Hsync | Pulse Width | thp | 1 | 2 | 10 | CLK | | | Pulse Width and Back Porch | thp + thb | 70 | 70 | 70 | | | | Front Porch | thf | 16 | 18 | 170 | | | | Display Line | tvd | 240 | 240 | 240 | | | | Cycle Time | tv | 254 | 263 | 360 | | | Vsync | Pulse Width | tvp | 1 | 2 | 10 | Н | | | Pulse Width and Back Porch | tvp + tvb | 13 | 13 | 13 | | | | Front Porch | tvf | 1 | 10 | 107 | | #### B. DE MODE | | Item | Symbol | Min. | Тур. | Max. | Unit | |------------|---------------|--------|------|------|------|------| | | CLK Frequency | fclk | 6.2 | 6.4 | 12.1 | M Hz | | Horizontal | Display Data | thd | 320 | 320 | 320 | 0.17 | | | Cycle Time | th | 406 | 408 | 560 | CLK | | Montinal | Display Data | tvd | 240 | 240 | 240 | 1.1 | | Vertical | Cycle Time | tv | 254 | 263 | 360 | Н | #### C. CLOCK AND DATA INPUT TIMING | | Item | Symbol | Min. | Тур. | Max. | Unit | |-------|------------|--------|-------|-------|------|------| | OL IX | Duty | | 40 | 50 | 60 | % | | CLK | Cycle Time | Tcph | 29.23 | 39.68 | ı | | | \/a | Setup Time | Tvsu | 8 | - | ı | | | Vsync | Hold Time | Tvhd | 8 | - | 1 | | | Hayma | Setup Time | Thsu | 8 | - | ı | | | Hsync | Hold Time | Thhd | 8 | - | 1 | ns | | Data | Setup Time | Tdsu | 8 | - | ı | | | Data | Hold Time | Tdhd | 8 | - | 1 | | | DE | Setup Time | Tesu | 8 | - | - | | | DE | Hold Time | Tehd | 8 | - | - | | #### 9.4 POWER SEQUENCE Fig. 9.7 Power Sequence Timing - Note 1: In order to avoid any damages, V_{DD} has to be applied before all other signals. The opposite is true for power off where V_{DD} has to be remained on until all other signals have been switch off. The recommended time period is 1 second. Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on. - Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power off where the backlight has to be switched off 1 second before the signals are removed. #### 9.5 SCAN DIRECTION Scan direction is available to be switched as below by setting CN1's U/D and L/R pins. Fig. 9.8 Normal Scan (U/D: High; L/R: High) Fig. 9.9 Vertical reverse (U/D: Low; L/R: High) Fig. 9.10 Horizontal reverse (U/D: High; L/R: Low) Fig. 9.11 Rotation of 180 degree (U/D: Low; L/R: Low) ## 9.6 DATA INPUT for DISPLAY COLOR | | COLOR & | | | | | | | | [| Data | Signa | al | | | | | | | | |-------|------------|----|----|-----|-----|-----|----|----|----|------|-------|----|----|-----|----|----|----|----|----| | | Gray Scale | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | В3 | B2 | B1 | В0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Color | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (2) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Red | • | : | : | : | : | : | : | : | : | • • | • | : | : | : | : | : | : | : | : | | | | : | | • • | • • | • • | : | : | : | • • | • • | : | : | • • | : | : | : | : | : | | | Red (62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Green | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Blue | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | • | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | ## 11. TOUCH PANEL The type of touch panel used on this display is resistive, analog, 4-wire and film on glass, and more characteristics are shown as below: #### 11.1 OPERATING CONDITIONS | Item | Specification | Remarks | | | |-------------------|---------------|------------|--|--| | Operating Voltage | DC 5V | DC 7V Max. | | | | Operating Current | 20 mA | - | | | #### 11.2 ELECTRICAL CHARACTERISTICS | Item | | Specification | Remarks | |-----------------------|---------|---------------|-----------| | Circuit register as | X- axis | 300Ω~1100Ω | | | Circuit resistance | Y-axis | 100Ω~800Ω | - | | Insulation Resistance | X-Y | >20MΩ | At DC 25V | | Lincovity | X | ≤ ± 1.5% | Note 4 | | Linearity | Υ | ≤ ± 1.5% | Note 1 | | Chattering | | ≤10 ms | - | Note 1: The test conditions and equipments of linearity are as below: - Material of pen: poly-acetal resin - End shape: R 0.8 mm - Test force: 150 gf - Pitch: 10 mm - Test area is shown in Fig. 11.1 Fig. 11.1 Fig. 11.2 As shown in Fig. 11.2, applying voltage meter to measure Va, Vb and Vxm, where Va is the maximum voltage in the active area; Vb is the minimum voltage in the active area; Vxm is the measured voltage of point x selected by random. Afterwards, the linearity can be calculated by following equation: $$Linearity = \frac{|Vxi - Vxm|}{Va - Vb} \times 100\%,$$ where Vxi is the idea voltage of point x. The method to measure the linearity of Y-axis is the same as above. | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2711-TX14D26VM1BPA-7 | PAGE | 11-1/2 | | |---------------------------------|--------------|-----------------------------|------|--------|--| |---------------------------------|--------------|-----------------------------|------|--------|--| #### 11.3 MECHANICAL CHARACTERISTICS | Item | า | Specification | Remarks | | | | | |------------------|-----|---------------|--------------------|--|--|--|--| | Finger | | 1.2N Max. | End shape: R8.0 mm | | | | | | Activation force | Pen | 1.2N Max. | End shape: R0.8 mm | | | | | | Surface Hardness | | 3H | JIS K 5400 | | | | | #### 11.4 OPTICAL CHARACTERISTICS | Item | Specification | Remarks | |---------------|---------------|---------| | Transmittance | 77% | - | #### 11.5 SAFETY AND ATTENTIONS - 1) Do not put heavy shock or stress on the touch panel. - 2) Please use soft cloth or absorbent cotton with ethanol to clean the touch panel by gently wiping. Moreover, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the touch panel's surface. - 3) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean the display's surface. - 4) UV protection is recommended to avoid the possibility of performance degrading when touch panel is likely applied under UV environment for a long period of time. ## 12. APPEARANCE STANDARD The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below: - The distance between inspector's eyes and display is 30 cm. - The viewing zone is defined with angle θ shown in Fig. 12.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on. Fig. 12.1 #### 12.1 THE DEFINITION OF LCD ZONE LCD panel is divided into 2 areas as shown in Fig.12.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area between A zone and metal frame. In terms of housing design, B zone is the recommended window area customers' housing should be located in. Fig. 12.2 #### 12.2 LCD APPEARANCE SPECIFICATION The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 12.4 and Fig. 12.5. | Item | Criteria | | | Applied zone | | | | |---|--|--|----------------|----------------|---------------|----------|--| | | Length (mm) | Width (mm) | Maximum n | umber | Minimum space | | | | Occatalos | L≦15 | $W \leq 0.02$ | Ignored | | - | А | | | Scratches | L≦15 | 0.02 <w≦0.1< td=""><td colspan="2">5</td><td>-</td></w≦0.1<> | 5 | | - | | | | | L>15 | 0.1 < W | 0 | | - | | | | Dent | | Serious one | is not allowed | 1 | | Α | | | Wrinkles in polarizer | | Serious one | is not allowed | | | Α | | | | Average dia | meter (mm) | Max | Maximum number | | | | | Dubbles on polarizor | D | ≦0.3 | | Ignored | | | | | Bubbles on polarizer | 0.3 <d≦0.6< td=""><td></td><td colspan="3">4</td></d≦0.6<> | | | 4 | | | | | | 0.6 <d< td=""><td></td><td></td><td colspan="2">0</td><td></td></d<> | | | 0 | | | | | | Filamentous (Line shape) | | | | | | | | | Length (mm) | Wid | Width (mm) Max | | imum number | А | | | | L≦2.0 | | V≦1.5 | | 5 | | | | 4) Ctoine | L>2.0 1.5 <v< td=""><td colspan="2">0</td><td></td></v<> | | 0 | | | | | | 1) Stains | Round (Dot shape) | | | | | | | | 2) Foreign Materials3) Dark Spot | Average diameter (mm) Maxim | | m number Min | | imum Space | | | | 3) Dark Spot | D≦0.2 lg | | nored | | - | А | | | | 0.2 < D < 0.6 | | 4 | | - | A | | | | 0.6≦D | | 0 - | | 1 | | | | | Those wiped out easily are acceptable | | | | | | | | | | Area① | Area2 | Max | imum number | | | | Dot-Defect | Bright dot-defe | ct 1 dot | 2 dot | | 3 dot | Α | | | Doi-Delect | Dark dot-defed | t 2 dot | 3 dot | | 4 dot | (Note 1) | | | | Bright + Dark po | int 3 dot | 4 dot | | 5 dot | | | Note 1: The Dot-Defect inspection within A zone (active area) would be divided into area ①, ② as Fig. 12.3 shown. Fig. 11.3 | KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET
NO. | 7B64PS 2712-TX14D26VM1BPA-7 | PAGE | 12-2/4 | | |---------------------------------|--------------|-----------------------------|------|--------|--| |---------------------------------|--------------|-----------------------------|------|--------|--| ### 12.3 TOUCH PANEL APPEARANCE SPECIFICATION The specification as below is defined by the amount of unexpected material in different zones of touch panel. | Item | Criteria | | | Applied zone | | | |-------------------|-------------------|--|------------|-----------------|------|--| | | Width (mm) | Length (mm) | | Maximum number | | | | Scratches | W>0.1 | L≧10 | | Not allowed | A, B | | | Scratches | 0.10>W≧0.05 | L<10 | | 4 pcs max. | | | | | 0.05≧W | | 10 | Ignored | | | | | Fi | ilamentous | (Line shap | e) | | | | | Width (mm) | | n (mm) | Maximum number | | | | | W>0.10 | - | | Dust (circular) | A, B | | | | 0.10≧W>0.05 | 3 <l< td=""><td>Not allowed</td><td></td></l<> | | Not allowed | | | | Foreign Materials | 0.05≧W | L≦3 | | Ignored | | | | | Round (Dot shape) | | | | | | | | Average diameter | er (mm) | | ximum number | A, B | | | | D>0.3 | | | Not allowed | | | | | 0.3≧D>0.2 | | 3 pcs max. | В | | | | | D≦0.2 | | Ignored | A, B | | | The limitation of glass flaw occurred on touch panel is defined in the table as below. | Item | Specifications | | |------------------|----------------|--| | Edge flaw | X
Y | $X \le 5.0 \text{ mm}$
$Y \le 1.0 \text{ mm}$
$Z \le \text{Thickness}$ | | Corner flaw | X Y Z | $X \le 3.0 \text{ mm}$
$Y \le 3.0 \text{ mm}$
$Z \le \text{Thickness}$ | | Progressive flaw | | Not allowed | ## 13. PRECAUTIONS #### 13.1 PRECAUTIONS of TOUCH PANEL - 1) Please refer to Fig. 13.1 for housing the display with touch panel into applications. The Fig. 13.1 shows some points as below: - The cushion needs to be designed between housing and touch panel in order to avoid unexpected pressure to cause any wrong reactions, and the cushion should be located in the cushion area. - The housing should not cover the active area of touch panel as the figure shown. ### Fig. 13.1 #### 13.2 PRECAUTIONS of ESD - 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling. - 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD. #### 13.3 PRECAUTIONS of HANDLING - 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3H, especially touch panel, metal frame and polarizer. - 2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling. - 3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact. - 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces. - 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer. - 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages. - 7) Maximum pressure to the surface of the display must be less than $1.96 \, \mathrm{x} \, 10^4$ Pa. If the area of applied pressure is less than $1 \, \mathrm{cm}^2$, the maximum pressure must be less than 1.96N. #### 13.4 PRECAUTIONS OF OPERATING - 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance. - 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature. - 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking. - 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than ± 100 mV. #### 13.5 PRECAUTIONS of STORAGE If the displays are going to be stored for years, please be aware the following notices. - 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light. - 2) The recommended long term storage temperature is between 10 C° ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses. - 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it. - 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer. ## 14. DESIGNATION of LOT MARK 1) The lot mark is showing in Fig.14.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number. 2) The tables as below are showing what the first 4 digits of lot mark are shorted for. | Year | Lot Mark | |------|----------| | 2016 | 6 | | 2017 | 7 | | 2018 | 8 | | 2016 | 9 | | 2020 | 0 | | Month | Lot Mark | Month | Lot Mark | |-------|----------|-------|----------| | Jan. | 01 | Jul. | 07 | | Feb. | 02 | Aug. | 08 | | Mar. | 03 | Sep. | 09 | | Apr. | 04 | Oct. | 10 | | May | 05 | Nov. | 11 | | Jun. | 06 | Dec. | 12 | | Week | Lot Mark | | |------------|----------|--| | 1~7 days | 1 | | | 8~14 days | 2 | | | 15~21 days | 3 | | | 22~28 days | 4 | | | 29~31 days | 5 | | 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z. | REV No. | ITEM | LOT No. | |---------|-----------------------------|---------| | Α | - | - | | В | Backlight Components Change | PCN1016 | 4) The location of the lot mark is on the back of the display shown in Fig. 14.1 #### Label example: Fig. 14.1